Time-resolved quantum nanoelectronics in electromagnetic environments / Benoît Rossignol ; sous la direction de Xavier Waintal et de Christoph Groth

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Systèmes mésoscopiques

Électronique quantique

Classification Dewey : 530

Waintal, Xavier (Directeur de thèse / thesis advisor)

Groth, Christoph (Directeur de thèse / thesis advisor)

Bauerle, Christopher (Président du jury de soutenance / praeses)

Simon, Pascal (1970-.... ; physicien) (Rapporteur de la thèse / thesis reporter)

Mora, Christophe (Rapporteur de la thèse / thesis reporter)

Joyez, Philippe (Membre du jury / opponent)

Weinmann, Dietmar (Membre du jury / opponent)

Université Grenoble Alpes (2020-....) (Organisme de soutenance / degree-grantor)

École doctorale physique (Grenoble) (Ecole doctorale associée à la thèse / doctoral school)

Photonique, électronique et ingénierie quantiques (Grenoble) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : La nanoélectronique quantique est dans une phase de grande expansion, soutenue principalement par le développement de l'informatique quantique. Une grande précision est nécessaire pour atteindre les objectifs actuels, mais d'un autre côté, les expériences sont aussi plus complexes que jamais. Les outils numériques semblent nécessaires pour réaliser la compréhension exigée tout en traitant une telle complexité. Les échelles de temps concernées sont de plus en plus courtes et se rapprochent des échelles de temps quantiques intrinsèques de l'appareil, comme le temps de vol. Les travaux antérieurs de notre groupe ont simulé le transport d'électrons en fonction du temps à une échelle quantique. Cette thèse vise à améliorer les algorithmes précédents pour obtenir une plus grande précision et une meilleure description des systèmes en incluant l'environnement électronique.Ce travail est divisé en trois domaines principaux. Tout d'abord, nous améliorons les outils de simulation numérique en fonction du temps pour prendre en compte un environnement électronique d'une manière cohérente. Le nouvel algorithme peut atteindre une précision arbitraire d'une manière contrôlée. Deuxièmement, le nouvel algorithme est utilisé pour démontrer l'existence de nouveaux phénomènes physiques. Nous étudions les jonctions Josephson dans différents environnements pour mettre en valeur le rôle des quasi-particules, l'effet d'une impulsion très courte, et pour étudier les techniques de caractérisation de la jonction topologique.Enfin, différents développements sont à l'étude afin d'intégrer le phénomène de décohérence et le bruit quantique dans les simulations.

Résumé / Abstract : Quantum nanoelectronics is in a phase of great expansion, supported mainlyby the development of quantum computing. A high degree of precision isrequired to achieve current objectives, but on the other hand, the experi-ences are also more complex than ever. Nuremical tools seem necessary toachieve the required understanding while dealing with such complexity. Thetime scales involved are getting shorter and are getting closer to the intrinsicquantum time scales of the device, such as time of flight. Our group’s pre-vious work has simulated time-dependent electron transport on a quantumscale. This thesis aims to improve the previous algorithms to obtain greateraccuracy and a better description of the systems by including the electronicenvironment. This work is divided into three main areas. First, we improveof numerical time-dependent simulation tools to take into account an elec-tronic environment in a self-consistent way. The new algorithm can achievearbitrary accuracy in a controlled way. Second, the new algorithm is used todemonstrate the existence of new physical phenomena. We study Josephsonjunctions in different environments to enhance the role of quasi-particles, theeffect of a very short pulse, and to study topological junction characteriza-tion techniques. Finally, various developments are being studied to integratethe phenomenon of decoherence and quantum noise into the simulations.