Accelerating sparse inverse problems using structured approximations / Cássio Fraga Dantas ; sous la direction de Rémi Gribonval

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Optimisation convexe

Apprentissage automatique

Problèmes inverses

Représentation parcimonieuse

Algèbre tensorielle

Gribonval, Rémi (1973-....) (Directeur de thèse / thesis advisor)

Université de Rennes 1 (Organisme de soutenance / degree-grantor)

École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) (Ecole doctorale associée à la thèse / doctoral school)

Université Bretagne Loire (Autre partenaire associé à la thèse / thesis associated third party)

Institut de recherche en informatique et systèmes aléatoires (Rennes) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : En raison de la vertigineuse croissance des données disponibles, la complexité computationnelle des algorithmes traitant les problèmes inverses parcimonieux peut vite devenir un goulot d'étranglement. Dans cette thèse, nous explorons deux stratégies pour accélérer de tels algorithmes. D'abord, nous étudions l'utilisation de dictionnaires structurés rapides à manipuler. Une famille de dictionnaires écrits comme une somme de produits Kronecker est proposée. Ensuite, nous développons des tests d'élagage sûrs, capables d'identifier et éliminer des atomes inutiles (colonnes de la matrice dictionnaire ne correspondant pas au support de la solution), malgré l'utilisation de dictionnaires approchés.

Résumé / Abstract : As the quantity and size of available data grow, the existing algorithms for solving sparse inverse problems can become computationally intractable. In this work, we explore two main strategies for accelerating such algorithms. First, we study the use of structured dictionaries which are fast to operate with. A particular family of dictionaries, written as a sum of Kronecker products, is proposed. Then, we develop stable screening tests, which can safely identify and discard useless atoms (columns of the dictionary matrix which do not correspond to the solution support), despite manipulating approximate dictionaries.