Réseaux de régulation génétique en aval des MAPKs orchestrant l'embryogénèse et la régénération chez l'anémone de mer Nematostella vectensis / Hereroa Johnston ; sous la direction de Éric Röttinger

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Régénération (biologie)

Ontogenèse

Anémones de mer

Röttinger, Éric (1976-....) (Directeur de thèse / thesis advisor)

Vervoot, Michel (Président du jury de soutenance / praeses)

Bertrand, Stéphanie (19..-.... ; biologiste) (Rapporteur de la thèse / thesis reporter)

Tiozzo, Stefano (Rapporteur de la thèse / thesis reporter)

Aboobaker, Aziz (Membre du jury / opponent)

Shkreli, Marina (1978-....) (Membre du jury / opponent)

Université Côte d'Azur (2015-2019) (Organisme de soutenance / degree-grantor)

École doctorale Sciences de la vie et de la santé (Sophia Antipolis, Alpes-Maritimes) (Ecole doctorale associée à la thèse / doctoral school)

Université de Nice (1965-2019) (Autre partenaire associé à la thèse / thesis associated third party)

Institut de recherche sur le cancer et le vieillissement (Nice) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : La régénération est un mode de développement, qui suite à un stresse physique permet de reformer à l’identique des structures biologiques initialement développer au cours de l’embryogénèse. De plus ce phénomène, plus ou moins important en fonction des organismes, est néanmoins répandu chez les métazoaires, suggérant ainsi une origine monophylogénique. D’où l’hypothèse d’un lien étroit entre la régénération et l’embryogénèse. En me basant sur cette hypothèse j’ai employé comme modèle pendant ma thèse, l’anémone de mer Nematostella vectensis. Ce modèle cnidaire offre effectivement l’opportunité unique de comparer la régénération d’un corps entier, dite extrême, à l’embryogénèse et ainsi étudier leurs liens au niveau moléculaire. Initialement établie entant que modèle d’embryologie permettant d’étudier l’évolution des réseaux de régulation génétique (RRG) orchestrant les moments clé de l’embryogénèse et s’imposer en tant que modèle d’étude de la régénération extrême. Tout d’abord, au cours de ma thèse j’ai participé à caractérisation tissulaire et cellulaire de la régénération de ce model afin d’en établir un répertoire de référence des étapes clés. En employant ce répertoire et le criblage de 80 d’inhibiteur de kinase, j’ai pu identifier plusieurs voies de signalisation régissant différente étape de la régénération, impliquant les MAPKs, JNK et ERK ainsi que plusieurs récepteurs de facteurs de croissances. Notamment ERK a également été décrit dans le processus de gastrulation chez Nematostella, dont j’ai contribué à l’établissement du RRG associé. C’est donc en me basant sur ce RRG et une base de donnée transcriptomic complète de la régénération de ce modèle, que j’ai pu établir le RRG en aval de ERK associé à la régénération. Par cette approche j’ai pu démontrer la relation au niveau moléculaire entre ces processus développementaux et surtout identifier des aspects spécifiques à la régénération.

Résumé / Abstract : Regeneration is a developmental process, which allow to regrow missing structures initially develop during embryogenesis, in response to an injury. Although, this ability to regenerate can be more or less dramatic depending on the organism, it is widely spread among metazoan. As such, suggesting a monophyletic origin and a tight link with embryogenesis has also been hypothesized. Based on this hypothesis, I used during my thesis the sea anemone Nematostella vectensis, a cnidarian model offers the unique opportunity to compare, whole body regeneration and embryogenesis to investigate their molecular links. In fact, Nematostella was established as an embryonic model to investigate evolution of gene regulatory network (GRN) underlying key stages e.g. gastrulation, but recently it has been a rising model to study whole body regeneration. I started to my thesis by carefully characterizing hallmarks of Nematostella regeneration starting from tissular to molecular level, establishing a comprehensive regeneration time line. By taking advantage of this tool, in association to the screening of 80 kinases inhibitors, I have identify several signaling pathways regulating various steps of regeneration in Nematostella, including the MAPK ERK, JNK and growth factor receptors. In parallel I participated to the study of ERK role during Nematostella gastrulation and the underpinning (GRN). Which offered a solid groundwork for the comparison with regeneration at the GRN level. Combining a candidate approach based on the embryonic GRN and a global transcriptomic analysis of regeneration, I have been able to bring evidence on the relationship between embryogenesis and regeneration and additionally to identify regeneration specific aspects.