Métamatériaux et métasurfaces acoustiques pour la collecte d'énergie / Shuibao Qi ; sous la direction de Mohamed Badreddine Assouar

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Métamatériaux -- Propriétés acoustiques

Cristaux phononiques

Ondes sonores

Matériaux piézoélectriques

Surfaces (physique)

Classification Dewey : 620.112 94

Classification Dewey : 534

Assouar, Mohamed Badreddine (1974-....) (Directeur de thèse / thesis advisor)

Ganghoffer, Jean-François (1963-....) (Président du jury de soutenance / praeses)

Djafari-Rouhani, Bahram (Rapporteur de la thèse / thesis reporter)

Tournat, Vincent (1976-....) (Rapporteur de la thèse / thesis reporter)

Declercq, Nico Félicien (1975-2...) (Membre du jury / opponent)

Kim, Miso (Membre du jury / opponent)

Université de Lorraine (Organisme de soutenance / degree-grantor)

École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine) (Ecole doctorale associée à la thèse / doctoral school)

Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Artificiels structurés, présentent des propriétés inédites et des aptitudes uniques pour la manipulation d’ondes en général. L’avènement de ces nouveaux matériaux a permis de dépasser les limites classiques dans tout le domaine de l’acoustique-physique, et d’élargir l’horizon des recherches fondamentales. Plus récemment, une nouvelle classe de structures artificielles, les métasurfaces acoustiques, présentant une valeur ajoutée par rapport aux métamatériaux, avec des avantages en termes de flexibilité, de finesse et de légèreté de structures, a émergé. Inspirés par ces propriétés et fonctionnalités sans précédent, des concepts innovants pour la collecte d’énergie acoustique avec ces deux types de structures artificielles ont été réalisés dans le cadre de cette thèse. Tout d’abord, nous avons développé un concept à base d’un métamatériau en plaque en se basant sur le de l’approche de bande interdite et des modes de défaut permis par le mécanisme de Bragg. Dans la deuxième partie de cette thèse, des métasurfaces d’épaisseur sublongueur d’onde et ultra-minces composées d’unités labyrinthiques ou de résonateurs de Helmholtz ont été conçues et étudiées pour s’atteler à la focalisation et au confinement de l’énergie acoustique. Cette thèse propose un nouveau paradigme de collecte d’énergie des ondes acoustiques à base des métamatériaux et métasurfaces. La collecte de cette énergie acoustique renouvelable, très abondante et actuellement perdue, pourrait particulièrement être utile pour l’industrie de l’aéronautique, de l’automobile, du spatial, de l’urbanisme

Résumé / Abstract : Phononic crystals (PCs) and acoustic metamaterials (AMMs), well-known as artificially engineered materials, demonstrate anomalous properties and fascinating capabilities in various kinds of wave manipulations, which have breached the classical barriers and significantly broaden the horizon of the whole acoustics field. As a novel category of AMMs, acoustic metasurfaces share the functionalities of AMMs in exotic yet compelling wave tailoring. Inspired by these extraordinary capabilities, innovative concepts of scavenging acoustic energy with AMMs are primarily conceived and sufficiently explored in this thesis. Generally, a planar AMM acoustic energy harvesting (AEH) system and acoustic metasurfaces AEH systems are theoretically and numerically proposed and analyzed in this dissertation. At first, taking advantage of the properties of band gap and wave localization of defect mode, the AEH system based on planar AMM composed of a defected AMM and a structured piezoelectric material has been proposed and sufficiently analyzed. Secondly, subwavelength (λ/8) and ultrathin (λ/15) metasurfaces with various lateral configurations, composed of labyrinthine and Helmholtz-like elements, respectively, are designed and analyzed to effectively realize the acoustic focusing and AEH. This thesis provides new paradigms of AEH with AMMs and acoustic metasurfaces, which would contribute to the industries of micro electronic devices and noise abatement as well