Application au domaine biomédical des moyens de caractérisation électromagnétique de matériaux dans le spectre des micro-ondes / Ana Luisa Antunes Neves ; sous la direction de Pierre Sabouroux

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Génie biomédical -- Emploi en diagnostic

Ondes électromagnétiques

Spectroscopie de microondes

Imagerie par résonance magnétique

Sabouroux, Pierre (Directeur de thèse / thesis advisor)

Bendahan, David (19..-....) (Président du jury de soutenance / praeses)

Thirion, Laetitia (Rapporteur de la thèse / thesis reporter)

Amadon, Alexis (19..-....) (Rapporteur de la thèse / thesis reporter)

Levasseur-Regourd, Anny-Chantal (Membre du jury / opponent)

Malléjac, Nicolas (Membre du jury / opponent)

Ciarletti, Valérie (19..-....) (Membre du jury / opponent)

Biquard, Francis (1936-....) (Membre du jury / opponent)

Aix-Marseille Université (Organisme de soutenance / degree-grantor)

Ecole Doctorale Physique et Sciences de la Matière (Marseille) (Ecole doctorale associée à la thèse / doctoral school)

Institut Fresnel (Marseille, France) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : La capacité de pénétration des ondes électromagnétiques (OEM), généralement non destructive, dans les matériaux ou tissus permet de sonder les milieux étudiés. En termes de santé publique, améliorer la qualité de vie est devenu un objectif majeur de la société actuelle. Des applications de sondage par OEM de divers milieux ou tissus dans le domaine biologique présentent un intérêt majeur dans les opérations de diagnostic et dans les opérations thérapeutiques. Les travaux de cette thèse abordent le vaste domaine des applications biomédicales, des interactions micro-ondes/radiofréquences et de la matière. Ces travaux de thèse se focalisent sur l’univers émergeant de l’Imagerie par Résonnance Magnétique (IRM) à Ultra-Haut Champ. Le premier objectif est de développer un fantôme anthropomorphique de tête humaine ou il faut prendre en compte les propriétés électromagnétiques et les temps de relaxation caractéristiques de chaque tissu. Cela permet d’obtenir une estimation précise des niveaux de DAS pour l’être humain et une notion des formations de hotspots lors d’un examen IRM haut-champ.Le deuxième objectif dans le domaine des IRM à très haut champ est l’étude et la fabrication des dispositifs d’homogénéisation de champ permettant ainsi d’éclaircir les zones d’ombres. Ce processus, dénommé Dielectric Shimming, est basé entre autre sur l’utilisation d’éléments discrets à hautes permittivités appelés pads. Ces pads sont composés de matériaux diélectriques à fortes permittivités, comme des solutions aqueuses de Titanate de Baryum, afin de focaliser le champ dans les zones initialement sombres de l’image de l’IRM (dans cas du cerveau : le cervelet et les lobes temporaux).

Résumé / Abstract : The penetration capacity of the electromagnetic (EM) waves in matter or biological tissues allows exploring media non-destructively. Concerning the public health sector, improving the quality of life has become one of the greatest concerns of nowadays society. EM wave research on different media and biological tissues shows a great potential for diagnostic applications and eventually for therapeutically applications. In this doctoral thesis, we focus on the vast domain of the biomedical applications of wave-matter interactions, based on the knowledge of the electromagnetic properties of matter, the complex permittivity and the conductivity. On a first instance, we address the emerging domain of ultra-high field MRI (Magnetic Resonance Imaging), which nowadays puts effort into the clinical implementation of 7T devices. Firstly our purpose is to produce an anthropomorphic head model, composed of the brain’s different layers, and taking into account the electromagnetic properties and the proton relaxation times inherent to each tissue. These realistic head models allow to evaluate the newly developed protocols for these ultra-high field devices. Secondly, we have studied and developed field homogenization devices, which allow brightening the shadow areas displayed in some MRI images, such as the cerebellum and the temporal lobes in brain imaging at 7T. This procedure, named Passive Shimming, is based on the use of high permittivity dielectric pads composed of Barium Titanate, which focalize the field to the areas where normally the wavelength in insufficient to generate a homogeneous signal distribution.