Dissipative supramolecular polymerization mediated by chemical fuels / Jorge Leira Iglesias ; sous la direction de Thomas Hermans

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Tectonique moléculaire

Polymérisation

Oxydoréduction

Modèles mathématiques

Classification Dewey : 547.1

Hermans, Thomas (Directeur de thèse / thesis advisor)

Palmans, Anja R.A. (19..-....) (Président du jury de soutenance / praeses)

Boekhoven, Job (Rapporteur de la thèse / thesis reporter)

Escuder, Beatriu (Rapporteur de la thèse / thesis reporter)

Université de Strasbourg (2009-....) (Organisme de soutenance / degree-grantor)

École doctorale Sciences chimiques (Strasbourg ; 1995-....) (Ecole doctorale associée à la thèse / doctoral school)

Institut de science et d’ingénierie supramoléculaires (Strasbourg) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Les cellules vivantes ont constamment recours à l’auto-assemblage dissipatif afin de s’adapter et d’effectuer différentes fonctions (translation, transport de masse, etc.). Encore loin d’un tel niveau de complexité, nous avons néanmoins l’ambition d’en étudier en détail les aspects thermodynamiques comme cinétiques afin de mieux comprendre les comportements supramoléculaire résultants. Jusqu’à présent, seul des systèmes dissipatifs transitoires ont pu être mis en évidence. Le design de nouvelles méthodes et de techniques capables de « pousser » des assemblages supramoléculaires hors-équilibre est crucial. Cette thèse énumère et explique en détail les différentes stratégies que nous avons mises en place afin de contrôler et de mieux comprendre les auto-assemblages dissipatifs. Nous avons notamment montré l’importance de « carburants chimiques » ou encore de gradients thermiques dans le maintien d’un système supramoléculaire dans un état hors-équilibre dans l’espoir d’y observer l’émergence de comportements uniques et nouveaux tels que des oscillations ou encore l’apparition de vagues supramoléculaires.

Résumé / Abstract : Living cells use dissipative self-assembly polymerization to quickly adapt and perform different functions (translation, mass transport, etc.). We are far from mimicking such systems. Thermodynamic and kinetic insights are important in order to elucidate the self-assembly behaviour of the different supramolecular systems. So far, only transient dissipative systems have been demonstrated. The design of new methodologies and techniques to bring and keep the system out of equilibrium are needed. In this thesis, we have developed new strategies and methodologies to tune, control and understand dissipative self-assembly. Constant influx of energy by chemical fuels or thermal gradients allows to keep the system under non-equilibrium conditions. This allows us to observe emergent behaviour such as oscillations or waves.