Turbulent convection in Rayleigh-Bénard cells with modified boundary conditions / Andrés Alonso Castillo-Castellanos ; sous la direction de Maurice Rossi et de Anne Sergent

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Hydrodynamique

Turbulence

Convection de Rayleigh-Bénard

Classification Dewey : 532

Rossi, Maurice (1960-....) (Directeur de thèse / thesis advisor)

Sergent, Anne (19..-.... ; Maître de conférences) (Directeur de thèse / thesis advisor)

Popinet, Stéphane (19..-.... ; directeur de recherche) (Président du jury de soutenance / praeses)

Chilla, Francesca (19..-.... ; chercheuse en physique) (Rapporteur de la thèse / thesis reporter)

Verma, Mahendra K. (physicien) (Rapporteur de la thèse / thesis reporter)

Podvin, Bérengère (Membre du jury / opponent)

Funfschilling, Denis (1970-....) (Membre du jury / opponent)

Université Pierre et Marie Curie (Paris ; 1971-2017) (Organisme de soutenance / degree-grantor)

École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris (Ecole doctorale associée à la thèse / doctoral school)

Institut Jean Le Rond d'Alembert (Paris ; 2006-....) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Une caractéristique remarquable de la convection de Rayleigh-Bénard qui concerne une couche de fluide horizontale chauffée par le bas et refroidie par le haut, est l’établissement spontané de l’ordre spatial et la formation d’une circulation cohérente à grande échelle. Comment les différents facteurs, tels que la géométrie du domaine et les conditions limites, influencent l’écoulement à grande échelle, restent une question ouverte. Malgré sa simplicité apparente, la convection de Rayleigh-Bénard présente une dynamique à grande échelle incroyablement riche et complexe, tels que des modes de torsion et du battement, la rotation du plan et des cessations de la circulation, qui coexistent souvent et se concourent. Une approche couramment utilisée dans l’étude des cessations, consiste à contraindre la circulation à grande échelle à un plan en limitant le domaine fluide à une cellule carrée (2D) ou à une cellule rectangulaire mince (quasi-2D). Cependant, il n’est pas tout à fait clair si les retournements 2-D et (quasi-)2-D correspondent au même phénomène. Le présent document est consacré à l’étude des modes d’écoulement à grande échelle dans la convection turbulente de Rayleigh-Bénard et de l’influence exercée par différents facteurs sur les structures d’écoulement et sur leur évolution temporelle. La caractérisation proposée combine une analyse statistique avec une approche physique s’appuyant sur le moment angulaire ainsi que sur les énergies cinétiques et potentielles pour mettre en évidence les mécanismes physiques sous-jacents. Nous essayons ensuite de relier ces mécanismes à chacun des modes d’écoulement distinctifs observés et à leur évolution.

Résumé / Abstract : One outstanding feature of the Rayleigh-Bénard problem which concerns a horizontal fluid layer heated from below and cooled from above, is the spontaneous establishment of spatial ordering and the formation of a coherent large-scale circulation. How different factors, such as the domain geometry and boundary conditions, influence the sizes and shapes of the large-scale flow remains an open question. Despite its apparent simplicity, Rayleigh-Bénard convection exhibits some incredibly rich and complex large-scale dynamics such as torsional modes, rotation, sloshing, and cessations, which often coexist and compete to each other. One approach, commonly used in the study of cessations is to constrain the large scale circulation to a plane by restricting the fluid domain to a (2-D) square cell or to a slim rectangular cell of small aspect ratio in the transversal direction. However, it is not entirely clear whether the 2-D and (quasi-)2-D reversals correspond to the same phenomenon. The present document is dedicated to the study of the large-scale flow patterns in turbulent Rayleigh-Bénard convection, and of the influence exerted by different factors on the flow structures and on their temporal evolution. The proposed characterization combines a statistical analysis with a physical approach relying on the angular momentum as well as the kinetic and potential energies to highlight the underlying physical mechanisms. We subsequently attempt to tie these mechanisms together to each of the distinctive flow patterns observed and to their evolution.