Réponse optique de nuage Rb87 dense / Stephan Jennewein ; sous la direction de Antoine Browaeys

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Atomes froids

Photons -- Émission

Lumière -- Absorption

Classification Dewey : 539.2

Classification Dewey : 537.24

Classification Dewey : 535.4

Browaeys, Antoine (Directeur de thèse / thesis advisor)

Pillet, Pierre (1953-....) (Président du jury de soutenance / praeses)

Adams, Charles (Rapporteur de la thèse / thesis reporter)

Labeyrie, Guillaume (Rapporteur de la thèse / thesis reporter)

Beugnon, Jérôme (1980-....) (Membre du jury / opponent)

Charron, Eric (1969-....) (Membre du jury / opponent)

Université Paris-Saclay (2015-2019) (Organisme de soutenance / degree-grantor)

École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) (Ecole doctorale associée à la thèse / doctoral school)

Institut d'optique Graduate school (Palaiseau, Essonne) (Autre partenaire associé à la thèse / thesis associated third party)

Résumé / Abstract : Cette thèse présente les résultats issus de l’investigation de la réponse optique de la transition D2 du Rubidium 87 en fonction de la densité de l’ensemble atomique. Afin de sonder cette transition nous utilisons un faisceau laser proche de la résonance (780nm) sur un échantillon de Rubidium ultra-froid (100µK). Nous observons ainsi la transmission en fonction de la longueur d’onde pour des densités allant de 10^12 atomes/cm^3 à 10^14 atomes/cm^3. Lorsque la densité augmente, on s’attend à ce que les interactions dipôle-dipôle jouent un rôle de plus en plus important du fait de la proximité des éléments diffusants. Quantitativement, les dipôles induits par le faisceau sonde commencent à jouer un rôle important lorsque la densité n atteint n*(lambda/2Pi)^3 = 1, une densité que nous atteignons dans notre système.Deux études systématiques seront présentées. La première montre les résultats obtenus pour un système à 12 niveaux, la deuxième pour un système à 2 niveaux obtenu par polarisation de l’ensemble atomique. Les résultats issus de ces études sont ensuite comparés aux théories existantes. La première approche est microscopique et décrit les interactions des dipôles couplés, la deuxième approche, macroscopique, est donnée par l’équation de Clausius-Mosotti.Les propriétés de propagation d’impulsions à travers ce système sont étudiées et révèlent en particulier un avancement fractionnel de l’impulsion et un indice de groupe inégalés.

Résumé / Abstract : This thesis investigates the response of the D2 transition of Rubidium 87 for various densities.To probe this transition we illuminate an ultra cold (100µK) sample of Rubidium 87 with close toresonance of lambda = 780 nm laser light.We observe the transmitted light while scanning the frequency over the atomic resonance. Such a spectrum is taken for peak densities ranging from 10^12 atoms/cm^3 to 10^14 atoms/cm^3. As matter gets denser and denser dipoie-dipole interaction start playing a role due to the close proximity of neighbouring scatteres. These interactions are caused by the probe light induced dipoles and start being important when the density reaches n*(lambda/2Pi)^3 = 1, which for us is the case at the upper end of the explored density range.We start off measuring these transmission data for degenerate 12-level Rubidium 87 and afterwardsfor Rubidium 87, which we first spin polarize and then by lifting the degeneracy generate an artifical2-level system. These results are systematically compared to the two available theories.A microscopic one, which is described by coupled dipoles and a macroscopic one the so calledClausius-Mosotti equation. None of the ab initio theories can explain the results obtained during this thesis.The rigerous comparison of the various acquired datasets shows that the data in itself is consistentand relative changes going from a 12-level system to a 2-level system are understood.Additionally we also investigate the pulse propagation behaviour through such a systemrevealing stunning values for the fractional pulse advancement and the group index.