Epitaxie en phase vapeur aux organométalliques et caractérisation de semi-conducteur III-As sur substrat silicium dans une plateforme microélectronique / Romain Cipro ; sous la direction de Thierry Baron et de Yann Bogumilowicz

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Épitaxie

Silicium -- Substrats

Microélectronique -- Innovations technologiques

Classification Dewey : 620

Baron, Thierry (1971-....) (Directeur de thèse / thesis advisor)

Bogumilowicz, Yann (1979-....) (Directeur de thèse / thesis advisor)

Sagnes, Isabelle (Président du jury de soutenance / praeses)

Fontaine, Chantal (1954-....) (Rapporteur de la thèse / thesis reporter)

Wallart, Xavier (1962-....) (Rapporteur de la thèse / thesis reporter)

Pin, Jean-Baptiste (Ingénieur) (Membre du jury / opponent)

Communauté d'universités et d'établissements Université Grenoble Alpes (Organisme de soutenance / degree-grantor)

École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire des technologies de la microélectronique (Grenoble) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Les dispositifs microélectroniques réalisés en technologie silicium possèdent des limitations intrinsèques liées à ce matériau et ses dérivés (Si, SiO2, SiGe…). Une des solutions pour proposer à l’avenir des performances accrues passe par l’introduction de nouveaux matériaux en technologie silicium. De bons candidats pour le remplacement du silicium en tant que canal de conduction sont les semi-conducteurs III-V à base d’arséniures (III-As) pour bénéficier de leurs propriétés de transport électronique exceptionnelles. Cependant, en préliminaire à la réalisation de tels dispositifs, il faut obtenir des couches de III-As de bonne qualité cristalline sur des substrats de silicium. Ces deux matériaux montrent en effet des différences de propriétés que l’on se propose de surmonter au cours de ces travaux par des stratégies de croissance cristalline.Ces travaux de thèse portent sur l’étude en détail des croissances de couches de matériaux GaAs et InGaAs, sur des substrats de silicium de 300 mm de diamètres et par épitaxie en phase vapeur aux organométalliques. Dans un premier temps, des efforts seront menés afin d’éliminer un des défauts cristallins les plus rédhibitoires pour l’utilisation de ces matériaux, à savoir les parois d’antiphase. Puis, la réalisation d’hétérostructures quantiques III-As permettra, via des analyses d’émissions optiques (photo- et cathodoluminescence), de rendre compte de la qualité globale ainsi que locale des couches ainsi épitaxiées. Enfin, des croissances localisées dans des motifs décananométriques préalablement réalisés sur les substrats de silicium seront conduites dans le but de comprendre les mécanismes de réduction des défauts pour ces géométries.

Résumé / Abstract : The microelectronic devices designed in the silicon technology field are intrinsically limited due to the nature of this material and its derivatives (Si, SiO2, SiGe…). One of the solutions to further reach enhanced performances lies in the introduction of new materials within silicon technology. Good candidates for silicon replacement as a conduction channel are the arsenide-based III-V semiconductors (III-As), in order to benefit from their outstanding electronic transfer properties. However, as a preliminary for the achievement of such devices, III-As films with good crystalline quality have to be obtained on silicon substrates. Indeed, those two materials display properties differences this work intends to overcome by following crystalline growth strategies.This PhD work deeply study the growth of GaAs and InGaAs films on 300 mm-diameter silicon substrates by metalorganic vapour phase epitaxy. In the first instance, efforts will be put on the elimination of one of the crystalline defects being the most prohibitive for the use of such materials: antiphase boundaries. Then, the achievement of III-As quantum heterostructures will enable, by optical emission analysis (photo- and cathodoluminescence), to reflect the global and local quality of the resultant epitaxial films. Finally, localised growth, in decananometric designs, preliminary performed on silicon substrates, will be carried out, with the aim of understanding the defects reduction mechanisms for those geometries.