Date : 2016
Type : Livre / Book
Type : Thèse / ThesisLangue / Language : français / French
Classification Dewey : 620
Accès en ligne / online access
Accès en ligne / online access
Accès en ligne / online access
Résumé / Abstract : Ce travail de thèse a pour but de comprendre l’impact des propriétés électriques du silicium cristallin sur les performances des cellules solaires Silicium à HétéroJonction (SHJ) et de déterminer des spécifications matériaux nécessaires en termes de durée de vie des porteurs de charge et de résistivité.Dans une première partie de cette thèse, le potentiel du silicium mono-like a été évalué pour la fabrication de cellules solaires SHJ. La forte productivité de cette technique permet de réduire considérablement les coûts de fabrication des plaquettes. Des rendements de conversion de 20% équivalents à ceux des matériaux du marché ont été obtenus ainsi qu’un rendement de 21.6% avec l’utilisation d’un procédé de fabrication de cellules haut rendements. Ces valeurs ont été obtenues pour des durées de vie volumiques moyennes sur les plaquettes supérieures à 1ms. Les principaux limitations de la qualité du matériau mono-like ont été identifiés. D’abord, la présence de zones multicristallines sur certaines plaquettes rend le matériau incomptable avec le procédé SHJ notamment en ce qui concerne les étapes de texturation des surfaces et ensuite l’uniformité en épaisseur des couches déposées. Ce type de défauts fait chuter en premier lieu la Jcc, puis la Vco et le FF et finalement le rendement de conversion. De plus, la présence de contamination et la génération de dislocations aux extrémités du lingot font également chuter la durée de vie volumique et les paramètres photovoltaïques des cellules. Finalement, seulement 30% de la hauteur de lingot a pu être utilisé pour des hauts rendements de conversion.La deuxième partie a été consacrée à l’étude et l’optimisation, avec la technologie SHJ, d’une technique de dopage innovante remplaçant celles utilisant des impuretés dopantes, telle que le phosphore, en générant des donneurs thermiques dans le substrat silicium cristallin. Cette méthode de dopage présente l’avantage d’utiliser l’oxygène naturellement présent dans le silicium en transformant en dopant par des recuits à 450°C. Cette technique est uniquement valable avec une procédé basse température tel que celui utilisé dans ce travail de thèse et permettrait de contrôler les propriétés électriques du silicium sur l’ensemble d’un lingot Cz afin d’augmenter le rendement matière. La compatibilité du silicium cristallin dopé par des DT a été validée pour une gamme de résistivité de 3-10Ω.cm et durées de vie volumique de 3-10ms. La limite d’utilisation des DT pour l’obtention de hauts rendements correspond à une concentration inférieure à 7x1014cm-3 (3Ω.cm, 3ms). La technique de dopage a été transférée avec succès à l’échelle du lingot et a permis d’obtenir de rendement de 20.7% avec un procédé industriel et même de 21.7% avec une métallisation « smart-wire ». Une perte de FF a été observée par rapport aux références, liées à une résistance série élevée dont l’origine n’a pas encore été confirmée mais dont la source la plus probable serait l’inhomogénéité radiale de résistivité générée par le dopage.
Résumé / Abstract : This study aims to understand the electrical properties impact of the crystalline Silicon on the HeteroJunction (SHJ) solar cells performances and define the required material specifications in terms of minority carrier lifetime and bulk resistivity.In the first part of this work, the potential of the mono-like silicon was evaluated for SHJ solar cells production The high productivity of the crystallization method allows to significantly reduce the material cost. 20% efficiencies comparable to reference wafers were obtained for industrial process and had reached 21.6% values have been reached with a high efficiency process. Values above 1ms bulk lifetime were mandatory to obtain these results. The main limitations of the material properties were identified. First, the presence of multicrystalline zones on the material is incompatible with the SHJ process especially regarding the texturization step and then layers thickness’ uniformity. This defects drive down, at the first order, the Jsc and then the Voc and FF. Moreover, the metallic contamination and the dislocations generation at the ingots ends induce also a bulk lifetime degradation and PV performances drop. Finally, only 30% of the ingot height was usable to obtain high solar cell efficiencies.In the second part of this work, an innovative doping method, replacing the ones which use doping impurities, such as phosphorus, by generating thermal donors (TD) was studied. The advantages of this doping method are to use the oxygen naturally content in the silicon to generate the doping after 450°C annealing. This method is only possible if low temperature solar cell process is performed such the one used in this work. It could control the electrical properties of the crystalline silicon throughout a complete Cz ingot and increase the material yield. For a resistivity range of 3-10Ω.cm and bulk lifetime between 3 and 10ms, the TD doped material is compatible with SHJ technology. The maximum TD concentration for a SHJ application was estimated to 7x1014cm-3.The doping method was successfully transferred to the ingot scale and allowed reaching 20.7% efficiency with an industrial process and 21.7% with the “smart-wire” improved metallization. A FF loss was observed compared to the references, related to high series resistances. The origin has not been confirmed yet, but the most likely source would be the radial resistivity inhomogeneity generated by doping on silicon bulk.