Automorphismes forts des algébroïdes de Courant réguliers / Benjamin Coueraud ; sous la direction de Vladimir Roubtsov

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Algébroïdes de Lie

Automorphismes

Classification Dewey : 510

Roubtsov, Vladimir (1952-....) (Directeur de thèse / thesis advisor)

Strobl, Thomas (19..-....) (Président du jury de soutenance / praeses)

Nunes Da Costa, Joana (19-....) (Rapporteur de la thèse / thesis reporter)

Powell, Geoffrey (Rapporteur de la thèse / thesis reporter)

Chemla, Sophie (19-..) (Membre du jury / opponent)

Université d'Angers (Organisme de soutenance / degree-grantor)

École doctorale Sciences et technologies de l'information et mathématiques (Nantes) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire angevin de recherche en mathématiques (Angers) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Les algébroïdes de Courant ont été introduits par T. J. Courant dans sa thèse portant sur l’intégrabilité des structures de Dirac. Ils sont devenus d’importants objets en géométrie différentielle depuis le travail de Z.-J. Liu, A. Weinstein et P. Xu sur les bigébroïdes de Lie. Ils jouent un rôle grandissant en physique théorique ainsi qu’en mathématiques. Dans cette thèse, on s’intéresse à décrire les automorphismes forts d’un algébroïde de Courant régulier. Dans une première partie des rappels sont faits sur les algébroïdes de Lie. Dans une seconde partie, on étudie les algébroïdes de Courant. Dans une troisième partie, après introduction de la notion de dissection, nous explicitons le groupe des automorphismes forts d’un algébroïde de Courant régulier relativement à une dissection, et calculons l’algèbre de Lie des automorphismes infinitésimaux relativement à cette dissection. De cette étude sont apparues de nouvelles symétries qui pourraient s’avérer utiles en physique théorique.

Résumé / Abstract : Courant algebroids have been introduced by T. J. Courant in his PhD thesis concerning the integrability of Dirac structures. They have become important objects in differential geometry since the seminal work of Z.-J. Liu, A. Weinstein and P. Xu on Lie bialgebroids. They play an increasing role in theoretical physics as well as inmathematics. In this thesis, we are interested by describing strong automorphisms of a regular Courant algebroid. In a first part, we review Lie algebroids. In a second part, we study Courant algebroids. In a third part, after introducing the notion of dissection, we compute the automorphism group of a regular Courant algebroid with respect to a dissection of it, and then compute the Lie algebra of infinitesimal automorphisms with respect to this dissection. From this work appeared new symmetries that could be useful in theoretical physics.