Rheophysics of granular materials with interstitial fluid : a numerical simulation study / Saeed Khamseh ; sous la direction de Jean-Noël Roux

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Milieux granulaires

Suspensions (chimie)

Ségrégation (matériaux granulaires)

Rhéologie

Roux, Jean-Noël (1963-....) (Directeur de thèse / thesis advisor)

Iordanoff, Ivan (1967-....) (Président du jury de soutenance / praeses)

Delenne, Jean-Yves (1974-....) (Rapporteur de la thèse / thesis reporter)

Chareyre, Bruno (1977-....) (Rapporteur de la thèse / thesis reporter)

Chevoir, François (Membre du jury / opponent)

Richard, Patrick (19..-.... ; physicien) (Membre du jury / opponent)

Université Paris-Est (2007-2015) (Organisme de soutenance / degree-grantor)

École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-2015) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire Navier (Paris-Est) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Nous étudions la rhéologie d'un ensemble de grains sphériques et frottants, par la simulation numérique, à l'échelle des grains, d'écoulements de cisaillement sous une contrainte normale P contrôlée, en présence d'un liquide interstitiel. En faible teneur, ce liquide se présente sous forme de ménisques intergranulaires qui transmettent des forces capillaires attractives ; s'il sature l'espace intergranulaire, on s'intéresse alors à l'écoulement de Stokes de la suspension dense ainsi constituée, où dominent les forces visqueuses. Les assemblages de grains secs constituent un système de référence aux propriétés mécaniques bien connues, en particulier l'approche de l'état critique de la mécanique des sols dans la limite quasi-statique. L'effet des ménisques capillaires qui joignent les grains en présence d'un liquide en faible saturation (régime pendulaire) est étudié pour les taux de cisaillement allant du régime quasi statique au régime inertiel. La rhéologie est caractérisée par le frottement interne apparent, la compacité de l'assemblage, les différences de contraintes normales et diverses variables internes, fonctions de deux paramètres de contrôle adimensionnés : le nombre inertiel I et la pression réduite P*, qui compare les forces de confinement à l'adhésion dans les contacts. Notre étude concerne les états homogènes, ce qui exclut les états de cisaillement localisés observés à faible P*, de l'ordre de 0,1. Le coefficient de frottement interne augmente de 0.35 (cas sec) à 0.9 environ pour P*=0.4, tandis que la compacité décroît de 0.59 à 0.52. L'important effet des forces capillaires sur la rhéologie, sensible pour des P* de plusieurs unités, est relié à la texture anisotrope des contacts et des ponts liquides. Lorsque P* décroît, nombre de contacts cohésifs sont maintenus pour des intervalles de déformation de plusieurs unités, survivant aux effets de rotation et de cisaillement de l'écoulement, et forment des amas percolants dans le système entier. Les résultats sont modérément sensibles à la saturation dans le régime pendulaire, mais fortement affectés par l'hystérèse de la conformation des ménisques. En présence de forces visqueuses et non plus capillaires, une version simplifiée de la dynamique stokésienne est adoptée dans laquelle les forces de lubrification entre proches voisins, supposées dominantes, sont les seules interactions hydrodynamiques. La rhéologie est fortement influencée par les contacts intergranulaires directes, qu'autorise la coupure à courte distance de la singulérité de lubrification du fait de la rugosité de surface des particules. Le même état critique que celui des grains secs est approché dans la limite quasi-statique. Nous discutons de lois rhéologiques exprimées en fonction du nombre visqueux qui remplace alors le nombre inertiel, et de la divergence de la viscosité effective à l'approche de la compacité critique en écoulement permanent, ou de la compacité maximale des assemblages aléatoires pour les configurations isotropes désordonnées.

Résumé / Abstract : We numerically simulate the shear flow of dense assemblies of 3D frictional spherical grains under a fixed normal stress P in steady-state, either in the presence of a small amount of an interstitial liquid, which gives rise to capillary menisci and attractive forces, or in the fully saturated state, when the mechanical properties of suspensions in Stokes flow are controlled by hydrodynamic and contact forces. Dry grain assemblies are used as a reference system for which the rheological properties - in particular the approach to the critical state – are rather well known and can be measured with good accuracy. A non-saturating wetting fluid creates capillary attractive intergranular forces, the effects of which on the rheology are investigated in the pendular state, with shear rates ranging from quasistatic to inertial regimes. The system behavior is characterized by the dependence of internal friction coefficient, solid fraction, normal stress differences and internal state parameters on two dimensionless control parameters: the inertial number, I and the reduced pressure, P*, comparing confining forces to contact tensile strength. We focus on steady homogeneous flows, excluding localized flow patterns which we observe to occur for low P* (of order 0.1). The apparent internal friction coefficient increases to 0.9 in the quasistatic limit for P*=0.4, from its dry value 0.35, while solid fraction decreases from 0.59 to 0.52. We relate the significant effect of capillary forces on the macroscopic behavior of the system, up to P* values of several unities, to fabric anisotropy parameters of contact and distant interactions. As P* decreases, many cohesive contacts are observed to survive the tumbling motion associated to the shear flow, and their average age exceeds the reciprocal shear rate. Corresponding clusters of grains with enduring capillary bonds gather a large proportion of grains and percolate through the sample. The results are shown to be moderately sensitive to saturation within the pendular range, yet rather strongly affected by the hysteretic nature of liquid bridges. In the presence of viscous forces, assuming lubrication effects to dominate the hydrodynamic interactions, we adopt a simplified version of the (overdamped) Stokesian dynamics approach, in which hydrodynamic interactions only couple close neighbours. Rheological properties are strongly influenced by direct intergranular contacts and friction, which are permitted due to a very small distance lubrication cutoff modeling surface asperities. The same critical state as in the dry case is approached in the quasistatic limit. We discuss expressions of rheological laws involving the viscous number instead of the inertial number, and the divergence of effective viscosities in steady flow and in isotropic random suspensions as either the critical state or the random close packing solid fraction are approached