Le groupe conforme des structures pseudo-riemanniennes / Vincent Pecastaing ; sous la direction de Charles Frances

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Géométrie conforme

Lorentz, Géométrie de

Espaces généralisés

Riemann, Variétés de

Frances, Charles (Directeur de thèse / thesis advisor)

Benoist, Yves (19..-....) (Président du jury de soutenance / praeses)

Herzlich, Marc (Rapporteur de la thèse / thesis reporter)

Feres, Renato (1962-....) (Rapporteur de la thèse / thesis reporter)

Dumitrescu, Sorin (19..-....) (Membre du jury / opponent)

Falbel, Elisha (19..-....) (Membre du jury / opponent)

Paulin, Frédéric (1962-....) (Membre du jury / opponent)

Université Paris-Sud (1970-2019) (Organisme de soutenance / degree-grantor)

Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire de mathématiques d'Orsay (1998-....) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Cette thèse a pour objet principal l'étude des structures pseudo-riemanniennes et de leurs groupes de transformations conformes, locales et globales. On cherche à obtenir des informations générales sur la structure du groupe conforme d'une variété pseudo-riemannienne compacte de dimension au moins 3, et on s'intéresse également à la géométrie et la dynamique des actions conformes de groupes de Lie sur de telles structures. L'essentiel des résultats présentés en géométrie conforme se situe en signature lorentzienne (1,n-1).Le point de vue qui est adopté ici est d'interpréter une structure conforme de dimension au moins 3 comme étant la donnée d'une géométrie de Cartan modelée sur l'univers d'Einstein de même signature. Ces structures géométriques, introduites par Élie Cartan, sont rigides et leurs symétries locales ont des propriétés remarquables. Nous retrouvons dans ce contexte des résultats formulés par Mikhaïl Gromov à la fin des années 1980, et les mettons en œuvre sur le cas particulier de la géométrie de Cartan définie par une structure conforme.

Résumé / Abstract : The main object of this thesis is the study of pseudo-Riemannian structures and their local and global conformal transformation groups. The purpose is to obtain general informations about the conformal group of a compact pseudo-Riemannian manifold of dimension greater than or equal to 3, and we also study dynamical and geometrical properties of conformal Lie group actions on such structures. The largest part of the result that are presented in this work are formulated in the (1,n-1) Lorentz signature.The approach we have chosen here to study a conformal structure is to work with its associated normal Cartan geometry modeled on the Einstein universe with same signature. These geometric structures, introduced by Élie Cartan, are rigid and their local automorphisms have nice behaviours. We formulate in this context results of Mikhaïl Gromov, that go back to the late 1980', and use them in the particular case of the normal Cartan geometry associated to a conformal structure.