Identification of deactivation mechanisms of cobalt Fischer-Tropsch catalysts in slurry reactor / Diego Peña Zapata ; sous la direction de Andrei Khodakov et de Anne Griboval-Constant

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Fischer-Tropsch, Procédé

Catalyseurs au cobalt

Catalyseurs -- Empoisonnement

Composés aromatiques

Acides carboxyliques

Gaz de synthèse

Classification Dewey : 541.395

Khodakov, Andrei (Directeur de thèse / thesis advisor)

Griboval-Constant, Anne (1971-....) (Directeur de thèse / thesis advisor)

Université Lille 1 - Sciences et technologies (Villeneuve-d'Ascq ; 1970-2017) (Organisme de soutenance / degree-grantor)

École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord) (Ecole doctorale associée à la thèse / doctoral school)

Unité de catalyse et chimie du solide (UCCS) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : La synthèse Fischer -Tropsch (SFT) produit des carburants liquides ultra-propres, ainsi que des produits chimiques à partir du gaz de synthèse issu d’une large gamme de matières premières : gaz naturel, gaz de schiste, charbon, biomasse. Les catalyseurs supportés à base de cobalt sont la meilleure option pour la SFT à basse température, en raison de leur grande stabilité et leur sélectivité en hydrocarbures lourds. Néanmoins, ces catalyseurs se désactivent avec le temps au cours de la réaction. La désactivation réduit la durée de vie et la productivité de ces catalyseurs. Par conséquent, la désactivation reste un défi majeur de la SFT. Dans ce travail, nous avons identifié les mécanismes les plus pertinents de la désactivation du catalyseur à base de cobalt dans le réacteur slurry : frittage du cobalt, attrition du catalyseur et dépôt de carbone. Il est démontré que la vitesse de désactivation dépend des conditions opératoires. Les résultats expérimentaux suggèrent que l'attrition du catalyseur est fortement influencée par la pression partielle d’eau dans le réacteur. La pression partielle élevée d’eau favorise la mobilité des nanoparticules de cobalt à la surface et leur frittage. Des agglomérats de cobalt de quelques microns situés sur des grains de catalyseur, ainsi que des particules métalliques de cobalt individuelles ont été observés dans les catalyseurs usés. La formation des agglomérats de cobalt a été favorisée à des vitesses spatiales basses et dans le gaz de synthèse pauvre en hydrogène. La dilution du gaz de synthèse au début de la réaction diminue l’attrition et réduit la formation des agglomérats de cobalt. Des hydrocarbures, des alcools, des cétones, des aldéhydes, des acides organiques ont été détectés dans les catalyseurs usés ; α -oléfines étant les espèces les plus abondantes. Les acides carboxyliques et les aldéhydes cinnamiques semblent être le plus néfastes pour les performances catalytiques. Le schéma de la formation de différentes espèces de carbone à la surface des catalyseurs de cobalt dans le réacteur slurry été proposé dans le manuscrit.

Résumé / Abstract : The Fischer-Tropsch Synthesis (FTS) produces ultra-clean liquid fuels and chemicals via conversion of syngas from a wide range of feedstocks: natural gas, shale gas coal and biomass. Supported cobalt-based catalysts are the best option for the low temperature FTS, due to their high stability and selectivity toward heavy paraffinic hydrocarbons. Nevertheless, cobalt catalysts deactivate with time on stream. This leads to a decrease in catalyst lifetime and productivity. Hence, catalyst deactivation remains a major challenge of FTS. In this work we identified cobalt sintering, catalyst attrition and carbon deposition as the most relevant catalyst deactivation mechanisms in slurry reactor; the deactivation rate being influenced by the operating conditions. The experimental results suggest that catalyst attrition is strongly affected by water partial pressure in the catalytic reactor. High water partial pressure favours mobility of cobalt nanoparticles on surface and cobalt sintering. Both cobalt agglomerates of micron size located on catalyst grains and detached cobalt metal particles were observed in the spent catalysts. The formation of cobalt agglomerates was favoured at lower gas space velocity and in H2-deficient syngas. Syngas dilution at the beginning of reaction decreases the degree of attrition and reduces cobalt agglomerate formation. Hydrocarbons, alcohols, ketones, aldehydes, organic acids were detected in the spent catalysts; α-olefins being the most abundant species. Carboxylic acids and alpha-alkyl cinnamic aldehyde seem to be most detrimental for the catalytic performance. A tentative schema of formation of different carbon species in cobalt catalysts during FTS in slurry reactor has been proposed in the manuscript.