Optimisation combinatoire pour la sélection de variables en régression en grande dimension : application en génétique animale / Julie Hamon ; sous la direction de Clarisse Dhaenens et de Julien Jacques

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Amélioration génétique

Métaheuristiques

Analyse de régression

Classification Dewey : 006.333

Dhaenens, Clarisse (Directeur de thèse / thesis advisor)

Jacques, Julien (1977-.... ; Mathématiques appliquées) (Directeur de thèse / thesis advisor)

Université Lille 1 - Sciences et technologies (Villeneuve-d'Ascq ; 1970-2017) (Organisme de soutenance / degree-grantor)

École doctorale Sciences pour l'Ingénieur (Lille) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire d'informatique fondamentale de Lille (LIFL) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Le développement des technologies de séquençage et de génotypage haut-débit permet de mesurer, pour un individu, une grande quantité d’information génomique.L’objectif de ce travail est, dans le cadre de la sélection génomique animale,de sélectionner un sous-ensemble de marqueurs génétiques pertinents permettant de prédire un caractère quantitatif, dans un contexte où le nombre d’animaux génotypés est largement inférieur au nombre de marqueurs étudiées.Ce manuscrit présente un état de l’art des méthodes actuelles permettant de répondre à la problématique. Nous proposons ensuite de répondre à notre problématique de sélection de variables en régression en grande dimension en combinant approches d’optimisation combinatoire et modèles statistiques. Nous commençons par paramétrer expérimentalement deux méthodes d’optimisation combinatoire, la recherche locale itérée et l’algorithme génétique, combinées avec une régression linéaire multiple et nous évaluons leur pertinence. Dans le contexte de la génomique animale les relations familiales entre animaux sont connues et peuvent constituer une information importante. Notre approche étant flexible, nous proposons une adaptation permettant de prendre en considération ces relations familiales via l’utilisation d’un modèle mixte. Le problème du sur-apprentissage étant particulièrement présent sur nos données dû au déséquilibre important entre le nombre de variables étudiées et le nombre d’animaux disponibles, nous proposons également une amélioration de notre approche permettant de diminuer ce sur-apprentissage.Les différentes approches proposées sont validées sur des données de la littérature ainsi que sur des données réelles de Gènes Diffusion.

Résumé / Abstract : Advances in high-throughput sequencing and genotyping technologies allow tomeasure large amounts of genomic information.The aim of this work is dedicated to the animal genomic selection is to select asubset of relevant genetic markers to predict a quantitative trait, in a context wherethe number of genotyped animals is widely lower than the number of markersstudied. This thesis introduces a state-of-the-art of existing methods to address the problem.We then suggest to deal with the variable selection in high dimensional regressionproblem combining combinatorial optimization methods and statistical models.We start by experimentally set two combinatorial optimization methods, theiterated local search and the genetic algorithm, combined with a linear multipleregression and we evaluate their relevance. In the context of animal genomic, familyrelationships between animals are known and can be an important information.As our approach is flexible we suggest an adaptation to consider these familialrelationships through the use of a mixed model. Moreover, the problem of overfittingis particularly present in such data due to the large imbalance between thenumber of variables studied and the number of animals available, so we suggest animprovement of our approach in order to reduce this over-fitting.The different suggested approaches are validated on data from the literature as wellas on real data of Gènes Diffusion.