Modélisation mathématique et simulations numériques de la mécanotransduction dans l'os cortical humain / par Mirela-Cristina Stroe ; sous la direction de Jean-Marie Crolet

Date :

Editeur / Publisher : [S.l.] : [s.n.] , 2010

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Modèles mathématiques

Simulation par ordinateur

Crolet, Jean-Marie (1954-....) (Directeur de thèse / thesis advisor)

Université de Franche-Comté. UFR des sciences et techniques (Autre partenaire associé à la thèse / thesis associated third party)

Université de Franche-Comté (Organisme de soutenance / degree-grantor)

Relation : Modélisation mathématique et simulations numériques de la mécanotransduction dans l'os cortical humain / par Mirela-Cristina Stroe / Villeurbanne : [CCSD] , 2011

Relation : Modélisation mathématique et simulations numériques de la mécanotransduction dans l'os cortical humain / par Mirela-Cristina Stroe ; sous la direction de Jean-Marie Crolet / Lille : Atelier national de reproduction des thèses , 2010

Résumé / Abstract : Le remodelage osseux est un processus très complexe qui fait intervenir plusieurs phénomènes interdépendants. Ce mémoire de thèse porte sur la modélisation mathématique d'un de ces phénomènes - la mécanotransduction - et sur les simulations numériques associées. Pour mieux comprendre la nature de l’information que reçoit une cellule afin de reconstruire l’ostéon le mieux adapté aux sollicitations mécaniques locales, plusieurs études ont été réalisées à partir d’une modélisation déjà existante. L’os cortical humain est considéré comme un milieu poreux multi-échelle. Trois niveaux architecturaux sont mis en avant et l’utilisation de la théorie de l’homogénéisation permet de déterminer numériquement les tenseurs de perméabilité pour chacun d’eux. Une analyse sur les lois viscoélastiques est développée au niveau nanoscopique. Afin de proposer une explication plausible de la mécanotransduction indépendamment de la localisation dans l’os, une étude permettant de calculer toutes les grandeurs physiques existant à une échelle donnée suite a un chargement appliqué à l’échelle macroscopique, a été mise en place. Le seul aspect fluide ne permet pas à la cellule de connaître son environnement et donc d’avoir une réponse cellulaire adaptée. Par contre, cette étude montre que les fibres de collagène, de par leur caractère piézoélectrique, transforment les sollicitations mécaniques existantes dans son entourage en un potentiel électrique auquel la cellule est sensible et peut réagir.

Résumé / Abstract : Bone remodeling is a highly complex process involving several interrelated phenomena. This thesis deals with one of these phenomena - the mechanotransduction, in particular with mathematical modeling and associated numerical simulations. In order to understand the nature of the information received by the cell before the reconstruction of the new osteon that is the best adapted to local mechanical stresses, several studies are developed from an existing model. Cortical bone is considered as a multiscale porous medium. Three architectural levels are proposed and a mathematical development based on the homogenization theory allows a numerical determination of the permeability tensor coefficients. An analysis based on viscoelastic laws is persued at nanoscopic level. For giving a plausible explanation of the mechanotransduction phenomenon independent of localization in bone, a study allowing the computation of all physical fields existing at a given level as consequence of macroscopic loading is presented. The only fluid aspect doesn’t allow a.good knowledge by the cell of its environment and therefore it cannot induce an adapted cellular activity. This study shows that the collagen fibers, by their piezoelectric nature, transform the mechanical stresses induced by the surrounding part in an electric potential that the cells can sense.