On probability distributions of diffusions and financial models with non-globally smooth coefficients / Stefano De Marco ; sous la direction de Vlad Bally

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Catalogue Worldcat

Équations différentielles stochastiques

Mathématiques financières

Malliavin, Calcul de

Volatilité (finances)

Classification Dewey : 510

Bally, Vlad (Directeur de thèse / thesis advisor)

Marmi, Stefano (1963-....) (Président du jury de soutenance / praeses)

Gobet, Emmanuel (Rapporteur de la thèse / thesis reporter)

Kohatsu-Higa, Arturo (Rapporteur de la thèse / thesis reporter)

Pratelli, Maurizio (Membre du jury / opponent)

Letta, Giorgio (1936-....) (Membre du jury / opponent)

Martini, Claude (19..-....) (Membre du jury / opponent)

Université Paris-Est (2007-2015) (Organisme de soutenance / degree-grantor)

Scuola normale superiore (Pise, Italie) (Organisme de cotutelle / degree co-grantor)

École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire d'Analyse et de Mathématiques Appliquées (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Des travaux récents dans le domaine des mathématiques financières ont fait émerger l'importance de l'étude de la régularité et du comportement fin des queues de distribution pour certaines classes de diffusions à coefficients non globalement réguliers. Dans cette thèse, nous traitons des problèmes issus de ce contexte. Nous étudions d'abord l'existence, la régularité et l'asymptotique en espace de densités pour les solutions d'équations différentielles stochastiques en n'imposant que des conditions locales sur les coefficients de l'équation. Notre analyse se base sur les outils du calcul de Malliavin et sur des estimations pour les processus d'Ito confinés dans un tube autour d'une courbe déterministe. Nous obtenons des estimations significatives de la fonction de répartition et de la densité dans des classes de modèles comprenant des généralisations du CIR et du CEV et des modèles à volatilité locale-stochastique : dans ce deuxième cas, les estimations entraînent l'explosion des moments du sous-jacent et ont ainsi un impact sur le comportement asymptotique en strike de la volatilité implicite. La modélisation paramétrique de la surface de volatilité, à son tour, fait l'objet de la deuxième partie. Nous considérons le modèle SVI de J. Gatheral, en proposant une nouvelle stratégie de calibration quasi-explicite, dont nous illustrons les performances sur des données de marché. Ensuite, nous analysons la capacité du SVI à générer des approximations pour les smiles symétriques, en le généralisant à un modèle dépendant du temps. Nous en testons l'application à un modèle de Heston (sans et avec déplacement), en générant des approximations semi-fermées pour le smile de volatilité

Résumé / Abstract : Some recent works in the field of mathematical finance have brought new light on the importance of studying the regularity and the tail asymptotics of distributions for certain classes of diffusions with non-globally smooth coefficients. In this Ph.D. dissertation we deal with some issues in this framework. In a first part, we study the existence, smoothness and space asymptotics of densities for the solutions of stochastic differential equations assuming only local conditions on the coefficients of the equation. Our analysis is based on Malliavin calculus tools and on « tube estimates » for Ito processes, namely estimates for the probability that the trajectory of an Ito process remains close to a deterministic curve. We obtain significant estimates of densities and distribution functions in general classes of option pricing models, including generalisations of CIR and CEV processes and Local-Stochastic Volatility models. In the latter case, the estimates we derive have an impact on the moment explosion of the underlying price and, consequently, on the large-strike behaviour of the implied volatility. Parametric implied volatility modeling, in its turn, makes the object of the second part. In particular, we focus on J. Gatheral's SVI model, first proposing an effective quasi-explicit calibration procedure and displaying its performances on market data. Then, we analyse the capability of SVI to generate efficient approximations of symmetric smiles, building an explicit time-dependent parameterization. We provide and test the numerical application to the Heston model (without and with displacement), for which we generate semi-closed expressions of the smile