Instabilité de systèmes hamiltoniens au sens de chirikov et bifurcation dans un problème d'évolution non linéaire issu de la physique / par Christophe Guillet ; [sous la direction de] Jacky Cresson

Date :

Editeur / Publisher : [S.l.] : [s.n.] , 2004

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Catalogue Worldcat

Systèmes hamiltoniens

Hyperboles (mathématiques)

Cresson, Jacky (Directeur de thèse / thesis advisor)

Université de Franche-Comté. UFR des sciences et techniques (Autre partenaire associé à la thèse / thesis associated third party)

Université de Franche-Comté (Organisme de soutenance / degree-grantor)

Relation : Instabilité de systèmes hamiltoniens au sens de chirikov et bifurcation dans un problème d'évolution non linéaire issu de la physique / par Christophe Guillet / Villeurbanne : [CCSD] , 2006

Relation : Instabilité de systèmes hamiltoniens au sens de chirikov et bifurcation dans un problème d'évolution non linéaire issu de la physique / par Christophe Guillet ; [sous la direction de] Jacky Cresson / Grenoble : Atelier national de reproduction des thèses , 2004

Résumé / Abstract : Nous mettons en évidence une condition géométrico-dynamique minimale créant de l'hyperbolicité au voisinage d'un tore homocline transverse partiellement hyperbolique dans un système Hamiltonien presque intégrable à trois degrés de liberté. On en déduit une généralisation des théorèmes de dynamique symbolique d'Easton. Nous donnons ensuite une estimation optimale du temps de diffusion d'Arnold le long d'une chaîne de transition dans les systèmes Hamiltoniens initialement hyperboliques à trois degrés de liberté en utilisant une chaîne d'orbites périodiques hyperboliques sous-jacente. Nous décrivons ensuite géométriquement à partir d'un système Hamiltonien presque intégrable à trois degrés de liberté à deux paramètres dû à Chirikov, un mécanisme de diffusion mettant en jeu un réseau de plans résonnants parallèles et voisins et un plan résonnant transversal au réseau. Ainsi, nous montrons qu'en dessous d'un certain seuil atteint par le paramètre prépondérant, on peut construire une orbite de transition dérivant en action à travers ce réseau modulationnel. Un des scénarii envisagés, le mécanisme de diffusion modulationnelle, basé sur l'existence de connexions hétéroclines entre tores partiellement hyperboliques issus de deux plans résonnants distincts est valide lorsqu'une condition de chevauchement est vérifiée. Nous étudions enfin le modèle bidimensionnel décrivant un écoulement laminaire avec convection mixte entre deux plaques planes puis dans un tube vertical. Avec des conditions aux bords réduites, nous montrons via le théorème de la variété centrale qu'il existe dans le premier cas une bifurcation de pitchfork pour une valeur critique du nombre de Rayleigh.

Résumé / Abstract : We prove the existence of a minimal geometrico-dynamical condition to create hyperbolicity in section in the vicinity of a transversal homoclinic partially hyperbolic torus in a near integrable Hamiltonian system with three degrees of freedom. We deduce in this context a generalization of the Easton's theorem of symbolic dynamics. Then we give the optimal estimation of the Arnold diffusion time along a transition chain in the initially hyperbolic Hamiltonian systems with three degrees of freedom with a surrounding chain of hyperbolic periodic orbits . In a second part, we describe geometrically a mechanism of diffusion studied by Chirikov in a near integrable Hamiltonian system with three degrees of freedom and depending of two parameters, involving a layer of nearby parallel resonant planes and a resonant plane crossing this layer in a same given energy manifold. Thus, we prove that under some threshold about the dominating parameter, we can construct a transition orbit drifting through this modulational layer. One of the sketches proposed, the mechanism of modulational diffusion, based on the existence of heteroclinic connections between partially hyperbolic tori of two nearby resonant planes of the layer, is valid when an overlapping condition is satisfied. We finally study the bi-dimensional model describing a laminar flow with mixed convection between two parallel plane plates and inside a vertical tube. With reduced boundary conditions, we prove via the central manifold theorem that the system has a primary pitchfork bifurcation for a critical value of the Rayleigh number.