Mechanistic study and prediction of influenza A virus genetic reassortment / Kuang-Yu Chen ; sous la direction de Nadia Naffakh et de Catherine Isel

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Langue / Language : français / French

Influenzavirus A

Recombinaison génétique

ARN -- Réplication

Virus -- Reproduction (biologie)

PCR (génétique)

Dimérisation

Microfluidique

Naffakh, Nadia (19..-.... ; biologiste) (Directeur de thèse / thesis advisor)

Isel, Catherine (19..-....) (Directeur de thèse / thesis advisor)

Taly, Valérie (1975-.... ; enseignant-chercheur en biologie) (Président du jury de soutenance / praeses)

Poncet, Didier (19..-.... ; virologue) (Rapporteur de la thèse / thesis reporter)

Kuntz-Simon, Gaëlle (19..-.... ; biologiste) (Rapporteur de la thèse / thesis reporter)

Cusack, Stephen (19..-....) (Membre du jury / opponent)

Université Paris Cité (2019-....) (Organisme de soutenance / degree-grantor)

École doctorale Bio Sorbonne Paris Cité (Paris ; 2014-....) (Ecole doctorale associée à la thèse / doctoral school)

Unité de génétique moléculaire des virus à ARN (Paris ; 2008-2022) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : La nature segmentée du génome des virus de la grippe A (IAV) permet une évolution rapide par réassortiment génétique. Bien que le nombre théorique de génotypes issus d'un réassortiment entre deux virus soit de 256 (28), la panoplie complète des différents génotypes n'a jamais été observée et certains gènes ont tendance à co-ségréger, suggérant que le réassortiment génétique est biaisé. Cependant, à ce jour, les contraintes qui façonnent le réassortiment génétique restent largement méconnues. L'objectif de mon projet est de progresser dans la compréhension des règles sous-jacentes au réassortiment génétique afin d'améliorer notre capacité à prédire le réassortiment entre les IAV circulant dans la nature.Nous avons dans un premier temps étudié l’incompatibilité entre sous-unités hétérologues de la polymérase virale (FluPol) réunies suite à un réassortiment génétique. En effet, nous avons observé qu'un virus réassortant dont le segment PB2 dérive du virus A/WSN/33 (WSN) dans un fond génétique A/PR/8/34 (PR8) était atténué, malgré un degré d’identité de 97% entre les protéines PR8-PB2 et WSN-PB2. Des passages en série indépendants ont conduit à la sélection de révertants phénotypiques portant des mutations secondaires distinctes sur les sous-unités PA, PB1 et PB2. L’impact de ces mutations a été étudié par génétique inverse et à l’aide de tests d’activité sur les polymérase virales. Pour chaque virus révertant, au moins une mutation a été localisée à l'interface de dimérisation de FluPol et s'est avérée réguler son taux de dimérisation. La mutation PA-E349K en particulier joue un rôle majeur dans la correction d'un défaut initial de réplication virale (ARNc -> ARNv). Nos résultats montrent que les sous-unités de la FluPol co-évoluent non seulement pour assurer des interactions optimales entre sous-unités, mais également des niveaux appropriés de dimérisation, indispensables à une réplication efficace. Ainsi, la dimérisation de la FluPol pourrait être l’un des facteurs limitant l’issue du réassortiment génétique.Parallèlement, afin d’étudier le réassortiment génétique de manière exhaustive et avec une puissance statistique suffisante, nous avons cherché à adapter un système déjà éprouvé de microfluidique en goutte pour un séquençage ciblé, à haut débit et massivement parallélisé, de > 105 IAV issus d’un réassortiment entre deux IAVs. Pour établir la faisabilité du système deux souches virales saisonnières circulantes ont été choisies et des amorces ciblant les huit segments d’ARNv de chaque virus ont été conçues, testées et optimisées. Une expérience contrôle préliminaire réalisée sur des cellules uniques infectées individuellement, montre que les informations sont correctement préservées au niveau de la cellule unique mais que la détection des segments et des souches était déséquilibrée. De nouvelles amorces ont été conçues et des stratégies d'amplification alternatives mises en œuvre et optimisées. Après analyse du réassortiment entre les deux souches saisonnières et validation des données par comparaison avec les données de surveillance, notre système sera appliqué au réassortiment génétique entre les virus saisonniers humains et les virus animaux d’intérêt zoonotique.À long terme, les données générées via notre plateforme devraient aider à la compréhension des mécanismes de réassortiment génétique entre virus influenza. Notre plateforme pourrait également devenir un outil prédictif s’ajoutant aux outils d'évaluation du risque de pandémie grippale ainsi qu’un outil de surveillance.

Résumé / Abstract : The segmented nature of the genome of influenza A viruses (IAVs) allows rapid evolution by genetic reassortment. Although the theoretical number of genotypes that can emerge from reassortment between two viruses is 256 (28), the full panel of different genotypes was never observed and certain genes tend to co-segregate, suggesting that genetic reassortment is biased. However, to date, the constraints that shape genetic reassortment remain largely unknown. The objective of my project is to make progress in understanding the rules underlying genetic reassortment in order to improve our capacity to predict reassortment among co-circulating IAVs.First, we investigated the incompatibility between non-cognate subunits of the influenza polymerase complex (FluPol) brought together by genetic reassortment. Indeed, we observed that a 7:1 reassortant virus whose PB2 segment derives from the A/WSN/33 (WSN) virus in an otherwise A/PR/8/34 (PR8) backbone was attenuated, despite a 97% identity between the PR8- and WSN-PB2 proteins. Independent serial passages led to the selection of phenotypic revertants bearing distinct second-site mutations on PA, PB1 and PB2. The constellation of mutations present on the revertant viruses was studied using reverse genetics and cell-based reconstitution of the viral polymerase. For each revertant virus, at least one mutation was located at the FluPol dimerization interface and was found to regulate the levels of FluPol dimer. For one of them, PA-E349K, a major role in correcting an initial defect in viral replication (cRNA -> vRNA) was demonstrated. Hence, our results show that the FluPol subunits co-evolve not only to ensure optimal inter-subunit interactions but also proper levels of dimerization of the heterotrimer, essential for efficient viral RNA replication. Thus, we suggest that FluPol dimerization is one of the factors that can restrict the outcome of genetic reassortment.In parallel, in order to study the outcome of genetic reassortment comprehensively and achieve adequate statistical power, we aimed at adapting a proven droplet-based microfluidic single-cell RNA-seq system for customized high-throughput massively parallelized targeted sequencing of > 105 reassortant IAVs. For a proof-of-concept, two circulating seasonal viral strains were chosen and gene specific primers targeting their eight segments were designed, tested and optimized. From a preliminary compartimentalized control experiment, we found that single cell information was well preserved but that segment and strain detection were imbalanced. New primers were designed and alternative amplification strategies were implemented and optimized. A new control experiment will be performed prior to analysis of reassortment between the two seasonal strains and validation of the data by comparison with surveillance data. Once validated, our system will be applied to genetic reassortment between human seasonal viruses and animal viruses of zoonotic interest. In the long term, the data generated through our platform should help understanding the mechanism of IAV genetic reassortment and become a valuable predictive tool added to the Pandemic Influenza Risk Assessment Tools for pandemic preparedness.