Extraction des variations spatio-temporelles du champ de gravité à partir des données de la mission spatiale GRACE : méthodes et applications géophysiques / Paoline Prevost ; sous la direction de Luce Fleitout et de Tonie Van Dam

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Langue / Language : anglais / English

Sciences de la Terre

Classification Dewey : 551.4

Fleitout, Luce (19..-....) (Directeur de thèse / thesis advisor)

Van Dam, Tonie (géophysicienne) (Directeur de thèse / thesis advisor)

Pfister, Laurent (19..-.... ; hydrologue) (Président du jury de soutenance / praeses)

Ramillien, Guillaume (19..-.... ; géophysicien) (Rapporteur de la thèse / thesis reporter)

Longuevergne, Laurent (1978-.... ; géophysicien) (Rapporteur de la thèse / thesis reporter)

Greff, Marianne (19..-.... ; géophysicienne) (Membre du jury / opponent)

Université de Recherche Paris Sciences et Lettres (2015-2019) (Organisme de soutenance / degree-grantor)

Université du Luxembourg (2003-....) (Organisme de cotutelle / degree co-grantor)

École doctorale Sciences de la terre et de l'environnement et physique de l'univers (Paris ; 2014-....) (Ecole doctorale associée à la thèse / doctoral school)

École normale supérieure (Paris ; 1985-....). Laboratoire de géologie (Laboratoire associé à la thèse / thesis associated laboratory)

École normale supérieure (Paris ; 1985-....) (Autre partenaire associé à la thèse / thesis associated third party)

Résumé / Abstract : L’estimation des variations spatio-temporelles du champ de gravité terrestre à partir des mesures de la mission satellitaire Gravity Recovery and Climate Experiment (GRACE) ont permis de mieux comprendre les redistributions de masse à des échelles de temps mensuelle, saisonnière ou décennale. Les solutions GRACE produites par différents centres, adoptant des stratégies de traitement différentes, conduisent à des résultats cohérents. Cependant, ces solutions présentent aussi des erreurs aléatoires et systématiques, celles-ci pouvant avoir une structure spatio-temporelle spécifique. Afin de réduire le bruit et améliorer la qualité des signaux géophysiques présents dans les données GRACE, plusieurs méthodes ont été proposées mais nécessitent en général des informations a priori sur la structure spatio-temporelle du bruit pourtant mal connue. Malgré les efforts considérables effectués pour améliorer la qualité des données GRACE pour des applications géophysiques de plus en plus fines, le filtrage du bruit reste une question problématique comme exposé dans le Chapitre 1. Dans cette thèse, nous proposons une approche différente, utilisant une technique de filtrage spatio-temporel, la Multichannel Singular Spectrum Analysis (M-SSA) décrite dans le Chapitre 2. La M-SSA est une méthode s’adaptant aux données, à variables multiples et non-paramétrique, qui exploite simultanément les corrélations spatiales et temporelles d’un champ géophysique. Nous utilisons la M-SSA sur 13 ans de données GRACE en harmoniques sphériques distribuées par cinq centres de calculs. Nous montrons que cette méthode permet d’extraire les modes de variabilité communs aux différentes solutions, et de réduire significativement les erreurs spatio-temporelles spécifiques à chaque solution et liées aux différentes stratégies de calculs. En particulier, cette méthode filtre efficacement les stries Nord-Sud dues, entre autres, aux imperfections des modèles de corrections des phénomènes connus. Dans le Chapitre 3, nous comparons notre solution GRACE à d’autres solutions en harmoniques sphériques et à des solutions basées sur des blocs de concentration de masse (mascons) utilisant des a priori sur la structure spatio-temporelle du signal géophysique. Nous comparons également les performances de notre solution M-SSA GRACE par rapport à d’autres solutions en calculant la déformation de surface induite par les variations de masse déduites des mesures GRACE et en la comparant avec des mesures indépendantes de déplacement provenant des stations du Global Navigation Satellite System (GNSS). Enfin, nous discutons dans le Chapitre 4 d’une application possible d’une solution GRACE améliorée pour répondre à des questions encore débattues liées au rebond post-glaciaire. Plus précisément, nous nous intéressons à la séparation du signal du rebond post-glaciaire, lié à la fonte ancienne, du signal de fonte récente des glaces dans la région de la Géorgie du Sud.

Résumé / Abstract : Measurements of the spatio-temporal variations of Earth’s gravity field recovered from the Gravity Recovery and Climate Experiment (GRACE) mission have led to unprecedented insights into large spatial mass redistribution at secular, seasonal, and sub-seasonal time scales. GRACE solutions from various processing centers, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial and temporal patterns in the latter. In order to dampen the noise and enhance the geophysical signals in the GRACE data, several methods have been proposed. Among these, methods based on filtering techniques require a priori assumptions regarding the spatio-temporal structure of the errors. Despite the large effort to improve the quality of GRACE data for always finer geophysical applications, removing noise remains a problematic question as discussed in Chapter 1. In this thesis, we explore an alternative approach, using a spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA) described in Chapter 2. M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability. We perform an M-SSA simultaneously on 13 years of GRACE spherical harmonics solutions from five different processing centers. We show that the method allows for the extraction of common modes of variability between solutions, and removal of the solution-specific spatio-temporal errors arising from each processing strategies. In particular, the method filters out efficiently the spurious North-South stripes, most likely caused by aliasing of the imperfect geophysical correction models of known phenomena. In Chapter 3, we compare our GRACE solution to other spherical harmonics solutions and to mass concentration (mascon) solutions which use a priori information on the spatio-temporal pattern of geophysical signals. We also compare performance of our M-SSA GRACE solution with respect to others by predicting surface displacements induced by GRACE-derived mass loading and comparing results with independent displacement data from stations of the Global Navigation Satellite System (GNSS). Finally, in Chapter 4 we discuss the possible application of a refined GRACE solution to answer debated post-glacial rebound questions. More precisely, we focus on separating the post-glacial rebound signal related to past ice melting and the present ice melting in the region of South Georgia.