Segmentation d'image par intégration itérative de connaissances / Mahaman Sani Chaibou Salaou ; sous la direction de Basel Solaiman et de Mohamed Ali Mahjoub

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Traitement d'images

Modélisation des données (informatique)

Traitement d'images -- Techniques numériques

Classification Dewey : 620

Solaiman, Basel (Directeur de thèse / thesis advisor)

Mahjoub, Mohamed Ali (Directeur de thèse / thesis advisor)

Korbaa, Ouajdi (1972-....) (Président du jury de soutenance / praeses)

Haton, Jean-Paul (1943-....) (Rapporteur de la thèse / thesis reporter)

Farah, Imed Riadh (Rapporteur de la thèse / thesis reporter)

Khenchaf, Ali (1961-....) (Membre du jury / opponent)

Kalti, Karim (Membre du jury / opponent)

École nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire (2017-....) (Organisme de soutenance / degree-grantor)

École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Le traitement d’images est un axe de recherche très actif depuis des années. L’interprétation des images constitue une de ses branches les plus importantes de par ses applications socio-économiques et scientifiques. Cependant cette interprétation, comme la plupart des processus de traitements d’images, nécessite une phase de segmentation pour délimiter les régions à analyser. En fait l’interprétation est un traitement qui permet de donner un sens aux régions détectées par la phase de segmentation. Ainsi, la phase d’interprétation ne pourra analyser que les régions détectées lors de la segmentation. Bien que l’objectif de l’interprétation automatique soit d’avoir le même résultat qu’une interprétation humaine, la logique des techniques classiques de ce domaine ne marie pas celle de l’interprétation humaine. La majorité des approches classiques d’interprétation d’images séparent la phase de segmentation et celle de l’interprétation. Les images sont d’abord segmentées puis les régions détectées sont interprétées. En plus, au niveau de la segmentation les techniques classiques parcourent les images de manière séquentielle, dans l’ordre de stockage des pixels. Ce parcours ne reflète pas nécessairement le parcours de l’expert humain lors de son exploration de l’image. En effet ce dernier commence le plus souvent par balayer l’image à la recherche d’éventuelles zones d’intérêts. Dans le cas échéant, il analyse les zones potentielles sous trois niveaux de vue pour essayer de reconnaitre de quel objet s’agit-il. Premièrement, il analyse la zone en se basant sur ses caractéristiques physiques. Ensuite il considère les zones avoisinantes de celle-ci et enfin il zoome sur toute l’image afin d’avoir une vue complète tout en considérant les informations locales à la zone et celles de ses voisines. Pendant son exploration, l’expert, en plus des informations directement obtenues sur les caractéristiques physiques de l’image, fait appel à plusieurs sources d’informations qu’il fusionne pour interpréter l’image. Ces sources peuvent inclure les connaissent acquises grâce à son expérience professionnelle, les contraintes existantes entre les objets de ce type d’images, etc. L’idée de l’approche présentée ici est que simuler l’activité visuelle de l’expert permettrait une meilleure compatibilité entre les résultats de l’interprétation et ceux de l’expert. Ainsi nous retenons de cette analyse trois aspects importants du processus d’interprétation d’image que nous allons modéliser dans l’approche proposée dans ce travail : 1. Le processus de segmentation n’est pas nécessairement séquentiel comme la plus part des techniques de segmentations qu’on rencontre, mais plutôt une suite de décisions pouvant remettre en cause leurs prédécesseurs. L’essentiel étant à la fin d’avoir la meilleure classification des régions. L’interprétation ne doit pas être limitée par la segmentation. 2. Le processus de caractérisation d’une zone d’intérêt n’est pas strictement monotone i.e. que l’expert peut aller d’une vue centrée sur la zone à vue plus large incluant ses voisines pour ensuite retourner vers la vue contenant uniquement la zone et vice-versa. 3. Lors de la décision plusieurs sources d’informations sont sollicitées et fusionnées pour une meilleure certitude. La modélisation proposée de ces trois niveaux met particulièrement l’accent sur les connaissances utilisées et le raisonnement qui mène à la segmentation des images.

Résumé / Abstract : Image processing has been a very active area of research for years. The interpretation of images is one of its most important branches because of its socio-economic and scientific applications. However, the interpretation, like most image processing processes, requires a segmentation phase to delimit the regions to be analyzed. In fact, interpretation is a process that gives meaning to the regions detected by the segmentation phase. Thus, the interpretation phase can only analyze the regions detected during the segmentation. Although the ultimate objective of automatic interpretation is to produce the same result as a human, the logic of classical techniques in this field does not marry that of human interpretation. Most conventional approaches to this task separate the segmentation phase from the interpretation phase. The images are first segmented and then the detected regions are interpreted. In addition, conventional techniques of segmentation scan images sequentially, in the order of pixels appearance. This way does not necessarily reflect the way of the expert during the image exploration. Indeed, a human usually starts by scanning the image for possible region of interest. When he finds a potential area, he analyzes it under three view points trying to recognize what object it is. First, he analyzes the area based on its physical characteristics. Then he considers the region's surrounding areas and finally he zooms in on the whole image in order to have a wider view while considering the information local to the region and those of its neighbors. In addition to information directly gathered from the physical characteristics of the image, the expert uses several sources of information that he merges to interpret the image. These sources include knowledge acquired through professional experience, existing constraints between objects from the images, and so on.The idea of the proposed approach, in this manuscript, is that simulating the visual activity of the expert would allow a better compatibility between the results of the interpretation and those ofthe expert. We retain from the analysis of the expert's behavior three important aspects of the image interpretation process that we will model in this work: 1. Unlike what most of the segmentation techniques suggest, the segmentation process is not necessarily sequential, but rather a series of decisions that each one may question the results of its predecessors. The main objective is to produce the best possible regions classification. 2. The process of characterizing an area of interest is not a one way process i.e. the expert can go from a local view restricted to the region of interest to a wider view of the area, including its neighbors and vice versa. 3. Several information sources are gathered and merged for a better certainty, during the decision of region characterisation. The proposed model of these three levels places particular emphasis on the knowledge used and the reasoning behind image segmentation.