Biochemical properties and regulation of the TopoVI-like complex responsible for the initiation of meiotic recombination / Alexandre Nore ; sous la direction de Bernard de Massy et de Thomas Robert

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Méiose

Recombinaison homologue -- Dissertation universitaire

Topoisomérases -- Dissertation universitaire

Cassures double-brin de l'ADN -- Dissertation universitaire

Massy, Bernard de (1958-....) (Directeur de thèse / thesis advisor)

Robert, Thomas (1977-....) (Directeur de thèse / thesis advisor)

Forterre, Patrick (1949-....) (Président du jury de soutenance / praeses)

Borde, Valérie (Rapporteur de la thèse / thesis reporter)

Bourbon, Henri-Marc (1956-....) (Membre du jury / opponent)

Neale, Matthew (Membre du jury / opponent)

Université de Montpellier (2015-2021) (Organisme de soutenance / degree-grantor)

Sciences Chimiques et Biologiques pour la Santé (Montpellier ; Ecole Doctorale ; 2015-....) (Ecole doctorale associée à la thèse / doctoral school)

Institut de génétique humaine (Montpellier) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Afin de transmettre leurs informations génétiques d'une génération à l'autre, les organismes à reproduction sexuée doivent réduire de moitié leur contenu chromosomique pour former des gamètes haploïdes. Cette réduction se produit lors d'une division cellulaire appelée méiose, durant laquelle une étape de réplication est suivie de deux divisions successives, la méiose I et II. Au cours de la méiose I, les chromosomes homologues se séparent et leur bonne ségrégation dépend de la création entre eux d’un lien physique. En méiose c’est le processus de réparation appelé recombinaison homologue, qui à la suite de l’induction dans le génome de centaine de cassures double brin par la protéine Spo11, permet d’établir ce lien. Spo11 est l'orthologue méiotique de la sous-unité catalytique de la topoisomérase VI, TopoVIA. Comme TopoVI est composée de deux sous-unités, TopoVIA et TopoVIB, l’existence d’un orthologue méiotique de TopoVIB était une question posée depuis l'identification de Spo11. Au cours de ma thèse, j'ai contribué à identifier une nouvelle famille de protéine, que l’on a nommé TopoVIB-like, orthologue à TopoVIB et nécessaire à la formation des cassures double-brin d'ADN méiotiques(Robert et al, 2016). Ces protéines ont des domaines similaires à ceux de TopoVIB, à savoir un GHKL (impliqué dans la liaison et l'hydrolyse de l'ATP), un domaine transducteur et un domaine CTD. Nous avons démontré que chez la souris, SPO11 forme un complexe avec TOPOVIBL. De plus, nous avons démontré que cette protéine est nécessaire à la formation des CDB. Ces résultats suggèrent que chez la souris, les CDB méiotiques sont catalysées par un complexe TopoVI-like. Chez S. cerevisiae, il n'y a pas d'orthologue clair de TopoVIB, mais nous avons trouvé que la protéine Rec102, connue pour être nécessaire à la formation des CDB méiotiques, présente une homologie partielle avec le domaine transducteur des TopoVIB-like. Rec102 forme un complexe avec Rec104, une protéine également requise pour la formation des CDB. Ainsi, nous avons émis l'hypothèse que le complexe Rec102 / Rec104 était l'orthologue méiotique de TopoVIB chez la levure, interagissant avec Spo11 pour former un complexe de type TopoVI-like. Malgré l'importance de Spo11, son mode d'action est mal connu. Cette absence de données biochimiques est due à l’insolubilité de la protéine. Le but de ma thèse était de caractériser le mode d'action et la régulation du complexe TopoVI-like dans la formation des CDB méiotiques. Tout d'abord, biochimiquement, en purifiant in vitro une forme soluble du complexe TopoVI-like de levure composé de Spo11 / Rec102 / Rec104 / Ski8 (un partenaire direct de Spo11) en co-exprimant ces protéines dans deux systèmes d'expression, E. coli et S. cerevisiae. En utilisant E. coli, j'ai réussi à purifier un complexe soluble formé par Spo11 / Rec102 / Rec104 / Ski8 et en utilisant S. cerevisiae, j'ai purifié deux complexes différents, l'un formé par les quatre protéines, et un formé uniquement par Spo11 et Rec102. Néanmoins, les tests d'activité sur différents substrats d'ADN n'ont révélé aucune activité de coupure de l’ADN. Le deuxième objectif de ma thèse était d'étudier comment, chez la souris, TOPOVIBL régule l'activité de SPO11 en interagissant avec d'autres protéines nécessaires à la formation des CDB. En double hybride, j'ai prouvé que, comme chez la levure, l'orthologue méiotique de TopoVIB chez la souris interagissait avec REC114, une autre protéine nécessaire à la formation des CDB. La cartographie de cette interaction à l'échelle de l’acide aminé a conduit à l'identification d'un résidu sur TOPOVIBL essentiel pour l'interaction entre TOPOVIBL et REC114. Afin d'étudier in vivo le rôle de l'interaction entre TOPOVIBL et REC114, une souris mutante pour le résidu identifié de TOPOVIBL a été générée à l'aide de CRISPER-Cas9 et son phénotype a été analysé.

Résumé / Abstract : To properly transmit their genetic information from one generation to another, sexually reproductive organisms need to halve their genome to form haploid gametes. This reduction occurs during a special cell division called meiosis, which proceeds through one round of DNA replication followed by two successive divisions called meiosis I and II. During meiosis I homologous chromosomes segregate, and their proper segregation depends on the homologous recombination pathway that establishes a physical link between the homologues. During meiosis, homologous recombination events are triggered by the formation of DNA double strand break (DSB) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 is the meiotic ortholog of the catalytic subunit of the TopoVI topoisomerase, TopoVIA. As TopoVI is composed of two subunits, TopoVIA and TopoVIB, the requirement for meiotic DSB formation of a B subunit was under investigation since the identification of Spo11. During my PhD, I contributed to the identification of a new family of protein, the TopoVIB-like family, ortholog to the Topoisomerase VI B subunit (TopoVIB) and required for meiotic DNA double strand break formation (Robert et al, 2016). These proteins share domains in part similar to the canonical TopoVIB which are a GHKL domain (involved in ATP binding and hydrolysis), a transducer domain and a CTD domain. We demonstrated that in mice, SPO11 forms a complex with TOPOVIBL. Biochemical characterization of this complex showed a structure compatible with an A2B2 organization. Furthermore, we demonstrated that this protein is required for meiotic DSB formation. These results suggest the existence, in mice, of a TopoVI-like complex that catalyzes the formation of meiotic DSB. In S. cerevisiae, there is no clear TopoVIB-like ortholog, but we found that the Rec102 protein, which is known to be required for the formation of meiotic DSB, shows a partial homology with the transducer domain of the TopoVIB-like proteins. Rec102 forms a complex with Rec104, a protein also essential for DSB formation. Thus, we hypothesized that the Rec102/Rec104 complex is the yeast meiotic ortholog of TopoVIB, interacting with Spo11 to form a meiotic TopoVI-like complex. Despite the importance of Spo11 little is known about its mode of action. This absence of biochemical data is due to the lack of solubility of the protein. The aim of my PhD was to characterize the mode of action and regulation of the TopoVI-like complex for meiotic DSB formation. First, biochemically, by purifying in vitro a soluble form of the yeast TopoVI-like complex composed by Spo11/Rec102/Rec104/Ski8. To achieve this objective, I co-expressed these proteins in two different expression systems, E. coli and meiotic culture of S. cerevisiae. Using E. coli I managed to purify a soluble complex formed by Spo11/Rec102/Rec104/Ski8, and using meiotic culture of S. cerevisiae, I purified two different complexes, one formed, by the four proteins, and one formed only by Spo11 and Rec102. Nevertheless, in vitro activity essays on different DNA substrates did not reveal any DNA cleavage activity. The second goal of my PhD was to study how in mouse, the activity of TOPOVIBL / SPO11 may be regulated by other proteins known to be required for DSB formation. Using Y2H experiment I was able to prove that, as in yeast, mouse TOPOVIBL interacts with REC114, a protein required for DSB formation. The mapping of this interaction at the amino-acid scale, leads to the identification of one residue on TOPOVIBL essential for the interaction between TOPOVIBL and REC114. In order to investigate in vivo the role of the interaction between TOPOVIBL and REC114, a mutant mouse carrying a mutation in the identified residue of TOPOVIBL was generated using CRISPER-Cas9, and its phenotype analyzed.