Développement d'une méthodologie de la «modélisation compartimentale» des systèmes en écoulement avec ou sans réaction chimique à partir d'expériences de traçage et de simulations de mécanique des fluides numérique / Jérémie Haag ; sous la direction de Jean-Pierre Leclerc et de Cécile Lemaitre et de Caroline Gentric

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Modélisation CFD

Modélisation compartimentale

Réacteurs chimiques

Dynamique des fluides -- Modèles mathématiques

Traceurs (chimie)

Classification Dewey : 620.106 4

Classification Dewey : 532.05

Leclerc, Jean-Pierre (1963-.... ; ingénieur) (Directeur de thèse / thesis advisor)

Lemaitre, Cécile (Directeur de thèse / thesis advisor)

Gentric, Caroline (19..-....) (Directeur de thèse / thesis advisor)

André, Christophe (19..-.... ; chimiste) (Président du jury de soutenance / praeses)

Legrand, Jack (19..-.... ; chercheur en génie des procédés) (Rapporteur de la thèse / thesis reporter)

Laurent, Julien (1983-....) (Rapporteur de la thèse / thesis reporter)

Université de Lorraine (2012-....) (Organisme de soutenance / degree-grantor)

RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire réactions et génie des procédés (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Cette thèse traite de la modélisation des réacteurs chimiques par la « modélisation compartimentale », qui consiste à diviser le système en un réseau d’une dizaine à quelques centaines de volumes interconnectés, appelés compartiments. La structure du réseau est déduite à partir d’informations provenant d’expériences de traçage, d’informations techniques sur le réacteur chimique, de simulations de mécanique des fluides numérique et des objectifs de la modélisation. Cette méthode procure un bon compromis entre temps de calcul et finesse des résultats. Quand ils sont correctement menés, les modèles à compartiments donnent des prédictions similaires, en termes de réactions chimiques, à ceux issus des simulations de mécanique des fluides numérique réactive avec un temps de calcul plus court et une représentation physique plus concrète du comportement du réacteur. Chaque étude issue de la littérature est consacrée à un réacteur spécifique avec une approche particulière qui ne peut pas être directement transposée sur un autre réacteur. L’objectif de cette thèse est d’apporter une contribution au développement d’une méthodologie la plus générale possible et de développer un outil de génération automatique et de résolution du système d’équations différentielles qui doit être résolu. Dans le premier chapitre, un état de l’art est réalisé, définissant le champ d’application de notre méthode, dans le but d’identifier les méthodes de découpage les plus pertinentes et les différentes méthodes pour calculer les échanges entre les compartiments. Dans un second chapitre, une méthode générale pour de la modélisation compartimentale est développée. Une approche polyvalente est proposée, consistant à découper le réacteur en tranches identiques. Le calcul des échanges entre compartiments, dus à la convection et la turbulence, est présenté en détail, avec la description des trois méthodes de calcul des échanges turbulents. Une interface a été développée permettant de construire n’importe quel réseau de compartiments. À partir de cette interface, les équations sont écrites et automatiquement résolues. La méthode est appliquée dans un troisième chapitre sur un cas défavorable au découpage en tranches. Cela a permis de tester les limites de cette approche. En particulier, deux points ont été étudiés : (1) l’applicabilité du découpage en tranches identiques et (2) la comparaison entre les méthodes de calcul des échanges turbulents. Le premier test a prouvé la robustesse de l’approche par division mais le second test n’a pas permis d’établir si une méthode de calcul est meilleure qu’une autre. Finalement, la méthode a été valorisée et transférée en implémentant les algorithmes développés dans un logiciel commercial. Ce logiciel permet de simuler la dispersion d’espèces réactives et non réactives (traceurs), dans un modèle contenant plusieurs centaines de compartiments organisés en tranches identiques

Résumé / Abstract : This PhD deals with modelling of chemical reactors with the “compartmental modelling” approach, which consists in dividing the system into a network from a dozen to several hundreds of interconnected volumes, called compartments. The structure of the network is deduced from tracer experiments, technical information about the chemical reactor and computational fluid dynamics flow simulations. This method provides a good compromise between computation time and results accuracy. When they are properly set-up, compartmental models give similar predictions, in terms of chemical reactions, as those of CFD simulations with a shorter calculation time and a more concrete representation of the reactor behavior. Every study from the literature is devoted to a specific reactor with a particular approach that cannot be straightforwardly transposed to other reactors. The aim of this PhD is to provide a contribution to the development of the most general possible methodology and to develop an automatic tool of generation and resolution of the differential equations system which must be solved. In the first chapter, a state of the art is proposed, defining the field of application of our method, in order to identify the most relevant division methods and the different methods to calculate the exchange between compartments. In the second chapter, a general methodology for compartmental modelling is developed. A versatile approach is proposed, consisting in dividing the reactor in identical slices. The calculation of exchange between compartments, both due to convection and turbulence, is presented in detail, with the description of three calculation methods for turbulent exchange. An interface has been developed, allowing to build any network of compartments. From this interface, the equations are written and solved automatically. The methodology is applied in the third chapter to an unfavorable case for slice cutting. This has allowed to test the limit of this approach. In particular, two points have been studied: (1) the applicability of division into identical slices and (2) the comparison between the turbulent exchange calculation methods. The first test has proved the robustness of the division approach but the second test has not allowed to establish whether one calculation method is better than another. Finally, the methodology has been promoted and transferred by implementing the developed algorithms within a commercial software. This software allows to simulate the dispersion of reactive and non-reactive (tracers) species, in model containing hundreds of compartments organized in identical slices