Mécanisme de la dérégulation du cycle cellulaire de l'hôte par Staphylococcus aureus / Rachid Aref El Aour Filho ; sous la direction de Nadia Berkova et de Vasco Ariston Carvalho Azevedo

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Berkova, Nadejda (Directeur de thèse / thesis advisor)

Carvalho Azevedo, Vasco Ariston (Directeur de thèse / thesis advisor)

Jan, Sophie (19..-....) (Président du jury de soutenance / praeses)

Bermúdez-Humarán , Luis Gilberto (19..-....) (Rapporteur de la thèse / thesis reporter)

Pereira Figueiredo, Henrique Cesar (Rapporteur de la thèse / thesis reporter)

Agrocampus Ouest (2008-2019) (Organisme de soutenance / degree-grantor)

Universidade federal de Minas Gerais. Facultade de educação (Brésil) (Organisme de cotutelle / degree co-grantor)

École doctorale Vie-Agro-Santé (Rennes) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Staphylococcus aureus est une bactérie Gram positive qui colonise la peau des animaux et des humains sains. Dans certaines conditions, telles que la perturbation du microbiote, S. aureus peut induire différentes maladies en déjouant les fonctions de défenses de la cellule hôte. Récemment, notre équipe a montré que les S. aureus méthiciline-résistant (MRSA) souche MW2 (USA400) étaient capables d’induire un retard de la transition de phase G2/M des cellules HeLa. Dans ce travail, nous avons démontré que cette action est initiée par des composants du surnagent de culture de S. aureus.Différentes fractions de surnagents de culture de MW2 ont été obtenues par la chromatographie d’exclusion et analysées par la spectrométrie de masse. Ces techniques nous ont permis d’identifier les peptides phenol-soluble modulins alpha (PSMa) comme responsables du retard du cycle cellulaire des cellules hôtes. Confirmant l’implication de ces modulines, la souche LAC¿psma déficiente en PSMa 1 – 4, n’a pas affecté la progression normale du cyle cellulaire de cellules epitheliales HeLa. De plus, le traitement de ces cellules avec des PSMa1 et PSMa3 synthétiques a induit un retard de la transition de phase G2/M qui a été associé à la diminution de l’expression de gènes codant des défensines ß. Enfin, nous avons démontré que la souche MW2 diminue le niveau d’optineurine et d’optineurine phosphorylée sur la sérine-177, une protéine hôte qui est impliquée dans la transition de phase G2/M. Ce travail représente une étape importante de la compréhension du mécanisme d’interférence de S. aureus

Résumé / Abstract : Staphylococcus aureus is a Gram-positive bacterium that colonizes the skin of healthy animals and humans. In certain conditions, including the disruption of the commensal microbiota, S aureus can cause different diseases by deviating the host defense functions. Recently, our group has shown that the methicillin-resistant S. aureus (MRSA) MW2 (USA400) strain causes delay in the transition of the G2/M phase of HeLa cells. In the present work, we demonstrated that this action is initiated by components of the supernatant of the S. aureus culture. Different supernatant fractions were obtained by size exclusion chromatography and were analyzed by mass spectrometry, which allowed to identify phenol-soluble modulins alpha (PSMa) as responsible for the host cell cycle delay.Confirming the involvement of these modulins in the delay, the MRSA LAC¿psma strain, which is deficient in PSMa1–4, did not affect the normal progression of the cycle in HeLa cells. In addition, the treatment of these cells with synthetic PSMa1 and PSMa3 caused delay in the transition of the G2/M phase associated with the decreased production of host ß-defensins. Lastly, we demonstrated that the MW2 strain, which produce PSMa, decreases the level of optineurin and optineurin phosphorylated at serine 177, a host protein that is involved in the G2/M phase transition. The work conducted in this thesis represents an important achievement in the understanding of how S. aureus interferes with the host cell cycle, revealing a new role for PSMa produced by this bacterium.