Multi-scale damage modelling of 3D textile reinforced composites including microstructural variability generation and meso-scale reconstruction / Yang Liu ; sous la direction de Saïd Hariri et de Stéphane Panier

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Composites à fibres

Analyse multiéchelle

Microtomographie

Endommagement, Mécanique de l' (milieux continus)

Composites -- Fatigue

Classification Dewey : 620.118

Hariri, Saïd (Directeur de thèse / thesis advisor)

Panier, Stéphane (19..-....) (Directeur de thèse / thesis advisor)

Université Lille 1 - Sciences et technologies (Villeneuve-d'Ascq ; 1970-2017) (Organisme de soutenance / degree-grantor)

École doctorale Sciences pour l'ingénieur (Lille ; 1992-2021) (Ecole doctorale associée à la thèse / doctoral school)

École nationale supérieure des techniques industrielles et des mines (Douai, Nord). Département Technologie des Polymères et Composites et Ingénierie Mécanique (2005-2016) (Laboratoire associé à la thèse / thesis associated laboratory)

IMT Nord Europe (2017-....) (Autre partenaire associé à la thèse / thesis associated third party)

Résumé / Abstract : Les matériaux composites à renforts tissés 3D connaissent une utilisation grandissante dans de nombreux domaines de par entre autres leurs excellentes propriétés mécaniques. Cependant, le manque de compréhension de leur comportement est un facteur limitant. Ces limites sont liées à la complexité des phénomènes intervenant à différentes échelles qui jouent un rôle essentiel sur la prédiction de la réponse du matériau. Pour comprendre et résoudre ce problème, ce travail a pour objectifs d’étudier les matériaux composites 3D à l’aide de simulations numériques et d’observations expérimentales réalisées aux échelles micro, méso et macro. L’étude expérimentale a été réalisée afin d’obtenir : les propriétés macroscopiques du matériau et les paramètres nécessaires à la reconstruction géométrique. Ces caractéristiques ont été évaluées à l’aide de diverses techniques : microscopies optique et électronique et tomographie par rayons X sur des éprouvettes avant et après essais mécaniques afin de détecter les éventuels endommagements. Ces observations ont permis de définir les stratégies numériques à mettre en place aux différentes échelles. Ainsi, à l’échelle microscopique, un algorithme de dynamique moléculaire a été développé et testé sur des volumes représentatifs élémentaires et sur des sections de fils. Les résultats obtenus montrent une grande capacité à générer la variabilité microstructurale. A l’échelle mésoscopique, une stratégie de reconstruction à partir d’images tomographiques a permis de prendre en compte l’architecture réelle du composite 3D. Cette technique de modélisation a montré son grand intérêt dans la prédiction de la réponse non linéaire du matériau.

Résumé / Abstract : 3D textile reinforced composites have gained extensive application in many industrial domains by taking their excellent mechanical properties and neat-shape manufacturing. However, lack of understanding in material behaviour might be limiting factors at the design stage. One of these limits is the complexity of the multi-scale phenomena which play a critical role in predicting the material response. In order to tackle this problem, the systematic and detailed investigations are required at different material scales. Therefore, this work addresses to study 3D composites alternating and combining numerical simulations and experimental observations at different material scales. Experiments were carried out to provide twofold parameters: material properties and required geometrical reconstruction parameters. X-ray tomography was employed to inspect the intact samples. Electronic and optical microscopy techniques have been used in order to investigate in details the yarn cross-sections at initial states and eventual damages mechanisms accumulated during mechanical tests. All those observations allowed choosing numerical strategies at different material scales. Thus, at the micro-scale, the modified molecular dynamics algorithm has been developed and tested on RVE and irregular cross-section yarns. The results show great capacity and originality in the generation of the microstructural variability. Consequently, at the meso-scale, the reconstruction strategy was chosen which allowed representing real mesostructure of the composites. This modelling technique has great importance in the prediction of the material response, especially at the non-linear stage.