Synthèse et caractérisation des nanoparticules intelligentes / Enaam Jamal Al Dine ; sous la direction de Eric Gaffet et de Halima Alem-Marchand et de Tayssir Hamieh et de Joumana Toufaily

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Produits de contraste paramagnétiques

Points quantiques -- Emploi en thérapeutique

Nanomédecine

Nanoparticules -- Emploi en thérapeutique -- Effet retard

Copolymères

Classification Dewey : 620.5

Classification Dewey : 615.6

Classification Dewey : 616.075 48

Gaffet, Eric (1959-....) (Directeur de thèse / thesis advisor)

Alem-Marchand, Halima (Directeur de thèse / thesis advisor)

Hamieh, Tayssir (1955-....) (Directeur de thèse / thesis advisor)

Toufaily, Joumana (19..-....) (Directeur de thèse / thesis advisor)

Meyer, Florent (Président du jury de soutenance / praeses)

Lanone, Sophie (1972-....) (Rapporteur de la thèse / thesis reporter)

Sandre, Olivier (19..-....) (Rapporteur de la thèse / thesis reporter)

Demoustier-Champagne, Sophie (Membre du jury / opponent)

Université de Lorraine (2012-....) (Organisme de soutenance / degree-grantor)

Université Libanaise (Organisme de cotutelle / degree co-grantor)

EMMA - Ecole Doctorale Energie - Mécanique - Matériaux (Ecole doctorale associée à la thèse / doctoral school)

Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : L’un des enjeux majeurs en nanomédecine est de développer des systèmes capables à la fois de permettre un diagnostic efficace et également de servir de plateforme thérapeutique pour combattre les infections et les neuro-dégénérescences. Dans cette optique, et afin d’améliorer la détection de tumeurs, des agents de contraste ont été développés dans le but d’augmenter le rapport signal sur bruit. Parmi ces agents, les nanoparticules (NPs) d’oxyde de fer superparamagnétiques (SPIOs) et les quantum dots (QDs) sont des candidats idéaux et ont reçu une grande attention depuis une vingtaine d’années. De surcroit, leurs propriétés spécifiques dues à leurs dimensions nanométriques et leurs formes permettent de moduler leur bio-distribution dans l’organisme. L’opportunité de revêtir ces NPs biocompatibles par des couches de polymères devraient permettre d’améliorer la stabilité de ces nanomatériaux dans l’organisme. Et par conséquent, favoriser leur biodistribution et également leur conférer de nouvelles applications en l’occurrence des applications biomédicales. Dans ce travail de thèse, nous avons développé de nouveaux systèmes thermo-répondant basés sur un cœur SPIOs ou QDs qui sont capables, à la fois, de transporter un principe actif anticancéreux, i.e. la doxorubicine (DOX) et de le relarguer dans le milieu physiologique à une température contrôlée. Deux familles de NPs ont été synthétisées. La première concerne des NPs de Fe3O4 SPIO qui ont été modifiées en surface par un copolymère thermorépondant biocompatible à base de 2-(2-methoxy) méthacrylate d’éthyle (MEO2MA), oligo (éthylène glycol) méthacrylate (OEGMA). La seconde famille, consiste en des NPs de ZnO recouverte du même copolymère. Pour la première fois, le copolymère de type P(MEO2MAX-OEGMA100-X) a été polymérisé par activateur-régénéré par transfert d’électron-polymérisation radicalaire par transfert d’atome (ARGET-ATRP). La polymérisation et copolymérisation ont été initiées à partir de la surface. Les NPs cœur/coquilles ont été caractérisées par microscopie électronique à transmission (TEM), analyse thermogravimétrique (TGA), etc. Nous avons montré que l’efficacité du procédé ARGET-ATRP pour modifier les surfaces des NPs de SiO2, Fe3O4 et de ZnO. L’influence de la configuration de la chaîne de copolymère et des propriétés interfaciales avec le solvant ou le milieu biologique en fonction de la température a été étudiée. Nous avons montré que les propriétés magnétiques des systèmes coeur/coquilles à base de Fe3O4 ne sont influencées que par la quantité de polymère greffée contrairement au QDs qui vient leur propriété optique réduire au-delà de la température de transition. Ce procédé simple et rapide que nous avons développé est efficace pour le greffage de nombreux copolymères à partir de surfaces de chimie différentes. Les expériences de largage et relarguage d’un molécule modèle telle que la DOX ont montré que ces nanosystèmes sont capables de relarguer la DOX à une température bien contrôlée, à la fois dans l’eau que dans des milieux complexes tels que les milieux biologique. De plus, les tests de cytocompatibilité ont montré que les NPs coeur/coquilles ne sont pas cytotoxiques en fonction de leur concentration dans le milieu biologique. A partir de nos résultats, il apparaît que ces nouveaux nanomatériaux pourront être envisagés comme une plateforme prometteuse pour le traitement du cancer

Résumé / Abstract : One of the major challenges in nanomedicine is to develop nanoparticulate systems able to serve as efficient diagnostic and/or therapeutic tools against sever diseases, such as infectious or neurodegenerative disorders. To enhance the detection and interpretation contrast agents were developed to increase the signal/noise ratio. Among them, Superparamagnetic Iron Oxide (SPIO) and Quantum Dots (QDs) nanoparticles (NPs) have received a great attention since their development as a liver contrasting agent 20 years ago for the SPIO. Furthermore, their properties, originating from the nanosized dimension and shape, allow different bio-distribution and opportunities beyond the conventional chemical imaging agents. The opportunity to coat those biocompatible NPs by a polymer shell that can ensure a better stability of the materials in the body, enhance their bio-distribution and give them new functionalities. It has appeared then that they are very challenging for medicinal applications. In this work, we have developed new responsive SPIO and QDs based NPs that are able to carry the anticancer drug doxorubicin (DOX) and release it in physiological media and at the physiological temperature. Two families of NPs were synthesized, the first one consist in superparamagnetic Fe3O4 NPs that were functionalized by a biocompatible responsive copolymer based on 2-(2-methoxy) ethyl methacrylate (MEO2MA), oligo (ethylene glycol) methacrylate (OEGMA). The second family consists in the ZnO NPs coated by the same copolymer. For the first time, P(MEO2MAX-OEGMA100-X) was grown by activator regenerated by electron transfer–atom radical polymerization (ARGET-ATRP) from the NPs surfaces by surface-initiated polymerization. The core/shell NPs were fully characterized by the combination of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and by the physical properties of the nanostructures studied. We demonstrate the efficiency of the ARGET-ATRP process to graft polymers and copolymers at the surface of Fe3O4 and ZnO NPs. The influence of the polymer chain configuration (which leads to the aggregation of the NPs above the collapse temperature of the copolymer (LCST)) was studied. We have demonstrated that the magnetic properties of the core/shell Fe3O4-based nanostructures were only influenced by the amount of the grafted polymer and no influence of the aggregation was evidenced. This simple and fast developed process is efficient for the grafting of various co-polymers from any surfaces and the derived nanostructured materials display the combination of the physical properties of the core and the macromolecular behavior of the shell. The drug release experiments confirmed that DOX was largely released above the co-polymer LCST. Moreover, the cytocompatibility test showed that those developed NPs do not display any cytotoxicity depending on their concentration in physiological media. From the results obtained, it can be concluded that the new nanomaterials developed can be considered for further use as multi-modal cancer therapy tools