Modélisation de l'amorçage de la Corrosion sous Contrainte en milieu primaire de l'alliage 600 / Jacqueline Caballero Hinostroza ; sous la direction de Jérôme Crépin

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Alliages chrome-fer-nickel -- Corrosion sous contrainte

Alliages chrome-fer-nickel -- Oxydation

Classification Dewey : 620.11

Crépin, Jérôme (Directeur de thèse / thesis advisor)

Marcus, Philippe (1953-....) (Président du jury de soutenance / praeses)

Blanc, Christine (1971-.... ; docteure en sciences des matériaux) (Rapporteur de la thèse / thesis reporter)

Tanguy, Benoît (1972-....) (Rapporteur de la thèse / thesis reporter)

Wolski, Krzysztof (19..-.... ; auteur en génie des matériaux) (Membre du jury / opponent)

Perez-Lozano, Sergio (Membre du jury / opponent)

Duhamel, Cécilie (1980-.... ; chercheuse en mécanique des matériaux) (Membre du jury / opponent)

Couvant, Thierry (Membre du jury / opponent)

Université de Recherche Paris Sciences et Lettres (2015-2019) (Organisme de soutenance / degree-grantor)

École doctorale Sciences des métiers de l'ingénieur (Paris) (Ecole doctorale associée à la thèse / doctoral school)

École nationale supérieure des mines (Paris ; 1783-....) (Autre partenaire associé à la thèse / thesis associated third party)

ENSMP MAT. Centre des matériaux (Evry, Essonne) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Plusieurs composants présents dans les réacteurs à eau sous pression (REP) ont été fabriqués en alliage 600, un alliage base nickel contenant environ 16% de chrome. Le retour d’expérience, comme les études de laboratoire, montrent une sensibilité à la corrosion sous contrainte (CSC) de cet alliage en milieu primaire.Des études antérieures ont permis de développer un modèle d’amorçage basé sur une approche macroscopique et dépendant de différents paramètres tels que : la température, la contrainte et la microstructure du matériau. Cependant, ce modèle manque de robustesse car l’effet de la teneur en hydrogène dissous et l’effet de l’histoire de chargement mécanique ne sont pas considérés et les effets microstructuraux ne le sont que partiellement.Ces travaux de thèse ont comme objectif principal de développer un modèle local prévoyant le temps d’amorçage des fissures de CSC en fonction de paramètres locaux liés à la microstructure du matériau (précipitation intergranulaire), à l'environnement (température, et teneur en hydrogène dissous) et aux contraintes locales aux joints des grains. Cette étude comprend donc la caractérisation des matériaux (analyse chimique, microstructure et comportement mécanique) et la réalisation des essais d’oxydation et de corrosion sous contrainte, ainsi que leur interprétation.Le modèle local développé est basé sur des grandeurs physiques et enchaine les différentes étapes de CSC à savoir l’incubation, l’amorçage et la propagation des fissures. Pour construire ce modèle, nous avons considéré la formation de pénétrations d’oxyde aux joints de grains comme une étape-clé dans l’amorçage des fissures de CSC. Pour cela, une cinétique d’oxydation intergranulaire pour l’alliage 600 a été identifiée. De plus, un critère d’amorçage des fissures de CSC a été déterminé en couplant contrainte locale et profondeur d’oxydation intergranulaire critique. Enfin, l’étape de propagation des fissures a été modélisée à partir d’une base de données rassemblant les profondeurs de fissure atteintes en fonction du temps d’essai pour différentes conditions expérimentales.

Résumé / Abstract : Several components present in the primary circuit of Pressurized Water Reactors (PWR) of nuclear power plants were manufactured with Alloy 600, a nickel base alloy containing 16 wt.% chromium. Operating experience of PWRs and laboratory tests showed that Alloy 600 is susceptible to stress corrosion cracking (SCC).Previous studies have allowed developing an initiation model based on a macroscopic approach and depending on several parameters such as temperature, applied stress and material microstructure. However, this model suffers from a lack of accuracy: dissolved hydrogen content and mechanical loading history effects are not considered and the microstructure effects (such as intergranular precipitation) are only partially taken into account.The aim of this study is to develop a ‘local’ model predicting stress corrosion cracking initiation time, based on physical mechanisms and local parameters related to the material microstructure (intergranular precipitation), the environment chemistry (temperature and dissolved hydrogen content) and stress concentration at grain boundaries. The local model relies on a cracking scenario with three main steps: incubation, initiation and crack extension.The formation of intergranular oxide penetration was assumed to be a key step in SCC initiation. For this purpose, oxidation tests were performed in simulated primary water. The intergranular oxidation kinetics of Alloy 600 was studied and the effects of intergranular carbide precipitation, dissolved hydrogen content and temperature were investigated. In addition, a cracking criterion coupling a critical local stress and a critical intergranular oxide depth was estimated. Finally, a sigmoid crack growth law was used to simulate both the slow and fast propagation steps. The local model was validated using a database built from the results of SCC tests performed on Alloy 600 and gathering the crack depths reached as a function of test duration for different experimental conditions (material microstructure, loading conditions).