Auto-assemblage de défauts structurels et de nano-objets dans des films cristaux liquides / Iryna Gryn ; sous la direction de Emmanuelle Lacaze et de Bruno Zappone

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Cristaux liquides

Nanoparticules

Autoassemblage

Classification Dewey : 530.429

Lacaze, Emmanuelle (19..-.... ; directrice de recherche CNRS) (Directeur de thèse / thesis advisor)

Zappone, Bruno (1975-....) (Directeur de thèse / thesis advisor)

Université Pierre et Marie Curie (Paris ; 1971-2017) (Organisme de soutenance / degree-grantor)

Università degli studi della Calabria (Organisme de cotutelle / degree co-grantor)

École doctorale Physique et chimie des matériaux (Paris) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Un intérêt scientifique croissant dans les cristaux liquides (LC) est née de leur capacité à guider l'assemblage des colloïdes1,2 et des nanoparticules (NPs)3-8 en configurations spatiales bien définies. Dans cette thèse, nous avons étudié les LC smectiques A (SmA) qui produisent 1D et 2D modèles de défauts de taille nanométrique9 avec sub-micrométrique périodicité et sont capables d'assembler des NP dans des structures ordonnées par défaut/NP interactions. La thèse a été axé sur deux tâches principales: l'élaboration d'une méthode fiable pour motifs de défaut de la création avec la symétrie et la périodicité prédéfinie qui peut être réglé par des champs électriques appliqués; assemblage NPs de nature différente, la taille et la forme en structures ordonnées dans accordable LC tableaux de défauts. Dans ce mémoire, nous avons montré que les modèles de défauts 1D et 2D peuvent être créés soit par variation de l'épaisseur du film à cristaux liquides en l'absence de champ électrique externe, ou en appliquant le champ à une épaisseur donnée. La morphologie de motif est déterminée par l'épaisseur de la région confinée, où le directeur de LC de rotation perpendiculaire à l'orientation parallèle à des substrats. Dans les cellules hybrides SmA/NP NPs anisométriques alignent le long de la directrice en l'absence de défauts, mais alignent parallèle à la ligne des défauts10 dans le noyau de défaut. Un champ électrique appliqué à la ligne normale de défaut de contestation de l'interaction des particules anisotropes défaut et peut conduire à une orientation perpendiculaire, en fonction du type et de la taille des particules. Ajout sphériques NPs d'or à SmA LCs conduit à la déstabilisation des domaines de défauts linéaires, la stabilisation de bandes striées et empêche l'agrégation même pour une grande concentration de NPs d'or dans les cellules hybrides.

Résumé / Abstract : An increasing scientific interest in liquid crystals (LCs) has arisen from their ability to guide the assembly of colloids and nanoparticles (NPs) into well-defined spatial patterns. In this thesis we have studied the smectic A (SmA) LCs which produce 1D and 2D patterns of nanometer size defects with sub-micrometer periodicity and are capable to assemble NPs into ordered structures via defect/NP interactions. The dissertation was focused on two main tasks: developing a reliable method for creation defect patterns with predefined symmetry and periodicity which can be tuned by applied electric fields; assembling NPs of different nature, size and shape into ordered structures within tunable LC defect arrays. In this thesis we have shown that 1D and 2D defect patterns can be created either by varying the LC film thickness in the absence of external electric field, or by applying the field at a given thickness. The pattern morphology is determined by the thickness of the confined region, where the LC director rotates from normal to parallel to the substrates orientation. In SmA/NPs hybrid cells anisometric NPs align along the director in the absence of defects but align parallel to line defects within the defect core. An electric field applied normal to the defect line challenges the anisotropic particle-defect interaction and may lead to perpendicular orientation, depending on the particle type and size. Adding spherical gold NPs (GNPs) to SmA LCs leads to destabilization of linear defect domains, stabilization of striated stripes and prevents aggregation even for a large concentration of GNPs in hybrid cells.