Méthode multi-échelle pour la conception optimale d'une bioraffinerie multi-produit / Ségolène Belletante ; sous la direction de Ludovic Montastruc et de Stéphane Negny

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Combustibles fossiles

Thermodynamique

Biomasse végétale

Gaz (carburant)

Montastruc, Ludovic (1976-....) (Directeur de thèse / thesis advisor)

Negny, Stéphane (Directeur de thèse / thesis advisor)

Domenech, Serge (19..-....) (Président du jury de soutenance / praeses)

Camargo-Pardo, Mauricio (1969-....) (Rapporteur de la thèse / thesis reporter)

Athès, Violaine (19..-.... ; chercheur en génie des procédés alimentaires) (Rapporteur de la thèse / thesis reporter)

Raynal, Ludovic (19..-....) (Membre du jury / opponent)

Institut national polytechnique (Toulouse ; 1969-....) (Organisme de soutenance / degree-grantor)

École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire de génie chimique (Toulouse ; 1992-....) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : De nos jours, de nouvelles technologies sont développées pour produire efficacement des produits dérivés de matières premières autresque le pétrole, comme par exemple la biomasse. En effet, la biomasse et plus spécifiquement la biomasse non alimentaire possède un fort potentielcomme substitut aux ressources fossiles pour des raisons environnementales, économiques et politiques. Dans ce contexte, l’étude des bioraffineries offre de nouvelles opportunités pour le Process System Engineering et plus particulièrement pour des activités de recherche quivisent la conception de systèmes constitués d’entités interconnectés. En effet, le verrou principal se concentre sur la modélisation et l’optimisation multi-échelle de la bioraffinerie qui permet l’intégration de plusieurs échelles spatiales allant de l’échelle moléculaire à celle de l’unité de production. Ces différentes échelles sont essentielles pour décrire correctement le système puisqu’elles interagissent en permanence. La forte dilution des courants est le meilleur exemple pour illustrer ces interactions. En effet, la présence d’eau induit de nombreux problèmes thermodynamiques (azéotropes, etc.) à l’échelle moléculaire, ce qui impacte fortement la topologie du procédé notamment sur les étapes de séparation, de purification et detraitement des purges (pour limiter les pertes en produits). Ainsi, la performance de la séquence d’opérations unitaires de l’étape de purification dépend entièrement de la concentration en eau. De plus dans la conception de bioraffinerie, il est fréquent de coupler fermentation et séparation afin d’améliorer les performances de la fermentation et de limiter la présence d’eau dans l’étapede purification. Par ailleurs, la grande quantité d’eau à chauffer ou refroidir entraine la nécessité de réaliser l’intégration énergétique du réseaud’échangeurs du procédé afin de minimiser le coût les dépenses énergétiques. L’objectif de ce travail est alors de proposer une méthodologie générique et les outils associés afin de lever certains verrous de la modélisation et l’optimisation multi-échelle de la bioraffinerie. Basée sur une approche par superstructure, la finalité de la méthodologie est d’évaluer les performances des alternatives étudiées en termes technico-économiques, environnementaux et d’efficacité énergétique en vue de son optimisation multi-objectifs pour trouver la voie de traitement optimale pour le(s) bioproduit(s) d’intérêt. Le cas d’application retenu se focalise sur la production de biobutanol à partir du système Acétone-Butanol-Ethanolet d’une biomasse d’origine forestière. La première étape de la méthodologie proposée concerne la création de la superstructure de la bioraffineriebasée sur une décomposition de cette dernière en 5 étapes principales : le prétraitement, la fermentation, la séparation, la purification et letraitement des purges. Ensuite, la seconde étape consiste à modéliser chaque alternative de procédé. Cette modélisation utilise un modèlethermodynamique à coefficients d’activité afin de décrire le comportement fortement non-idéal des molécules du milieu. De plus, l’intégration du traitement des purges et de l’intégration énergétique durant cette étape permet d’améliorer le procédé. Enfin, la dernière étape s’intéresse à l’optimisation multiobjectif qui se focalise sur différents aspects : maximisation de la production, minimisation des coûts, du prix minimal de vente des bioproduits, des pertes en produits et de l’impact environnemental. Cette dernière étape inclut également des études de sensibilité sur les différents paramètres de la méthodologie : opératoires, économiques, environnementaux... A l’issu de l’optimisation, un compromis seratrouvé afin d’obtenir une bioraffinerie durable.

Résumé / Abstract : Nowadays, to replace chemical products derived from petrol, new technologies are developed to produce products derived from others feedstock than crude oil like biomass. Indeed, biomass and especially nonfood biomass has a high potential as substitute due to its environmental, economic and political interests. Inthis context, the study of biorefineries offers new opportunities in the Process System Engineering and especially in research activities which aim to design systems with interlinked compounds. Indeed, the main hurdle focuses on the modeling and the multiscale optimization of thebiorefinery that allows integratingseveral spatial scales from the molecular scale to the plant scale. These scales are essential to describe accurately the system because they interact. The large dilution of flows is the best example to show these interactions. Indeed, water induces many thermodynamic problems (azeotropes, etc.) at the moleculescale, that impact on the process design and mainly on the separation, the purification and the treatment of purges (to limit losses of products). In consequence, the sequence of unit operations of the purification step depends of the water concentration. Furthermore, in the design of the biorefinery, the fermentation and theseparation are usually combined in order to improve performances of the fermentation and limit the water concentration in the purification step. Moreover, the large amount of water that needs to be heated or cooled induces the need of the energy integration of the heat exchangers network to minimize energy consumption. The aim of this work is to propose a generic methodology with connected tools in order to overcome some hurdles caused by the modeling and the multiscaleoptimization of the biorefinery. Based on the superstructure approach, the purpose of the methodology is to estimate performances of considered alternatives in the technical, economic, environmental and energy efficient aspects in preparation for the multiobjective optimization which finds the optimal process for the productionof the interesting bioproduct. This work focuses especially on the production of biobutanol through the Acetone-Butanol-Ethanol system from forest biomass. The methodology begins with the creation of the superstructure of the biorefinery composed by 5 major steps: the pretreatment, the fermentation, the separation, the purification and the treatment of purges. Next, the methodology consists in modeling each alternative of process. It integrates a thermodynamic model with activity coefficients in order to describe accurately the greatly nonideal behavior of molecules. Moreover, the treatment of purges and the energy integration are integratedat this step in order to improve the process. Finally, the last step interests to the multiobjective optimization which focuses on different aspects: the maximization of production and the minimization of the costs, the minimal selling price of bioproducts, the losses of bioproducts and the environmental impact. This step includes also sensitivity analysis on different parameters of the methodology: operating, economic, environmental… After the optimization, a compromise is made in order to obtain sustainable biorefinery.