Thermo-oxydation des polyamides / Octavie Okamba Diogo ; sous la direction de Bruno Fayolle et de Emmanuel Richaud

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Polyamides

Peroxydes

Cinétique chimique

Fayolle, Bruno (1981-....) (Directeur de thèse / thesis advisor)

Richaud, Emmanuel (1979-....) (Directeur de thèse / thesis advisor)

Gardette, Jean-Luc (1952-.... ; professeur de chimie) (Président du jury de soutenance / praeses)

Gigmes, Didier (19..-....) (Rapporteur de la thèse / thesis reporter)

Lame, Olivier (1975-.... ; auteur en mécanique) (Rapporteur de la thèse / thesis reporter)

Fernagut, François (Membre du jury / opponent)

Guilment, Jean (1959-2020) (Membre du jury / opponent)

Bourson, Patrice (Membre du jury / opponent)

École nationale supérieure d'arts et métiers (1780-....) (Organisme de soutenance / degree-grantor)

École doctorale Sciences des métiers de l'ingénieur (Paris) (Ecole doctorale associée à la thèse / doctoral school)

Procédés et Ingeniérie en Mécanique et Matériaux (Paris) (Laboratoire associé à la thèse / thesis associated laboratory)

Procédés et Ingeniérie en Mécanique et Matériaux (Paris) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Les polyamides sont des thermoplastiques techniques qui entrent dans la conception de pièces destinées à remplacer certains composants métalliques des moteurs automobiles. En dépit de propriétés mécaniques initiales satisfaisantes, leur tenue à long terme est limitée par leur sensibilité à l'oxygène conduisant à des réactions de thermo-oxydation. Ces réactions ont été largement étudiées dans le cas des polyoléfines mais peu dans le cas des polyamides, rendant nécessaire l'élaboration d'un modèle cinétique susceptible de prédire la fragilisation donc la durée de vie des polyamides. Cette thèse est une contribution à la compréhension du processus d'oxydation dans le cas des polyamides aliphatiques et à la construction d'un modèle cinétique. La démarche cinétique réside tout d'abord dans la caractérisation physico-chimique multi-échelle de films de PA11 oxydés dans différentes conditions de températures (90 à 165 °C sous air) et sous différentes pressions partielles d'oxygène. Un modèle cinétique couplant oxydation et post-polycondensation est proposé ici : il permet de simuler les données expérimentales (hydroperoxydes, carbonyles et masse molaires) quelles que soient les conditions d'exposition. Parallèlement, un critère intrinsèque gouvernant la fragilisation du PA11 est identifié afin de prédire cette dernière à partir du modèle cinétique. Enfin, l'influence de l'ajout d'antioxydants phénoliques et des sels de cuivre sur la cinétique d'oxydation est caractérisée. Un premier modèle cinétique prenant en compte la stabilisation du PA11 décrit les tendances spécifiques de la stabilisation du PA11 comme l'apparition de la pseudo-période d'induction contribuant à une augmentation significative de la durée de vie du PA11.

Résumé / Abstract : Some metal components of automotive engine are bound to be replaced by polyamide parts. However, despite their thermal resistance polyamides are sensitive to oxygen leading to thermal oxidation chain reactions responsible for their long-term properties. While durability is critical for polyamide users, only a few studies deal with the elaboration of a kinetic model capable of predicting polyamide lifetime (time to embrittlement) in contrary to polyolefins (especially polyethylene). This PhD thesis is a contribution to the understanding of aliphatic polyamide thermal degradation by considering chemical and physical aspects of oxidation process in order to build a kinetic model. Our approach is based on a multi-scale physicochemical characterization of oxidized PA11 film samples under air between 90 and 165 °C but also under oxygen pressure. The proposed kinetic model coupling oxidation and solid state polymerization is able to simulate the whole experimental data (hydroperoxides, carbonyls and molar mass changes). In a same time, an intrinsic criterion for embrittlement is assessed to predict lifetime whatever the exposure conditions. Finally, the influence of phenols and copper salts on the oxidation kinetic is investigated. A first kinetic model including the phenol stabilizing effect is capable of simulating the main observed trends for stabilized PA11 such as the appearance of the pseudo induction period which contributes to the significant improvement of PA11 durability.