Etudes structurales des rhodopsines microbiennes et des autres protéines membranaires au moyen de la cristallographie aux rayons X et de la modélisation informatique / Ivan Gushchin ; sous la direction de Valentin Gordeliy et de Sergei Grudinin

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Cristallographie

Protéines membranaires

Classification Dewey : 530

Gordeliy, Valentin (19..-....) (Directeur de thèse / thesis advisor)

Grudinin, Sergei (19..-....) (Directeur de thèse / thesis advisor)

Pebay-Peyroula, Eva (1956-.... ; critallographe) (Président du jury de soutenance / praeses)

Büldt, Georg (19..-....) (Rapporteur de la thèse / thesis reporter)

Willbold, Dieter (19..-....) (Rapporteur de la thèse / thesis reporter)

Engelhard, Martin (19..-....) (Membre du jury / opponent)

Université de Grenoble (2009-2014) (Organisme de soutenance / degree-grantor)

École doctorale physique (Grenoble ; 1991-....) (Ecole doctorale associée à la thèse / doctoral school)

Institut de biologie structurale (Grenoble) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Chaque cellule vivante sur notre Terre est entourée d'une membrane lipidique. Les protéines résidant dans la membrane exécutent multitude de fonctions essentielles pour la survivance de la cellule. Parmi eux sont le transport actif et passif dans et hors de la cellule, la signalisation et la catalyse des réactions.Une des plus grandes familles de protéines membranaires sont rhodopsins microbiennes, qui utilisent l'énergie de la lumière pour leur fonction. Les membres de cette famille comptent parmi eux les pompes de protons, cations et anions, entraînée par l'illumination, les canaux ioniques activés par l'illumination et, finalement, photorécepteurs. Bien que les aspects fondamentaux de leur fonctionnement ont été connus depuis un certain temps, il ya une abondance de questions sans réponse. Dans cette thèse, plusieurs structures de rhodopsines microbiennes (y compris la première structure de protéorhodopsine et la première structure de la pompe à sodium) sont présentés et analysés. Les structures ouvrent la voie pour comprendre les similitudes et les différences entre les différents rhodopsines microbiennes et pour exploiter cette connaissance pour créer de meilleurs instruments à base de rhodopsines microbiennes pour des applications biologiques, par exemple, dans le domaine de optogenetics.Alors que la première partie de ce travail porte sur les nouvelles structures de rhodopsines microbiennes, la deuxième partie présente l'approche de simulation pour comprendre la signalisation en fonction des rhodopsines sensorielles dans phototaxie. Les domaines HAMP des protéines transductrices des signals des rhodopsines sensorielles sont étudiés au moyen de la dynamique moléculaire, et il est démontré que les simulations peuvent être utilisés pour la construction et la validation des structures atomiques des domaines de signalisation, ainsi que pour la compréhension des changements conformationnels associée à signalisation, initié par les transformations des rhodopsine sensorielles.La troisième et la dernière partie décrit le travail sur la protéine IPCT-DIPPS de Archaeoglobus fulgidus, une enzyme catalysant deux étapes consécutives de di-inositol-phosphate biosynthèse. La structure résolue peut servir de modèle pour comprendre le mécanisme catalytique de transférases CDP-alcool, une grande famille de protéines comptant des milliers de membres, parmi lesquels sont cinq protéines humaines, qui catalysent les étapes majeures de la biosynthèse des lipides. La structure a également été utilisé pour prédire les sites de liaison des ligands sur le site actif de l'enzyme et pour proposer le mécanisme d'action catalytique.Pour résumer, cette thèse présente les études structurales de diverses protéines membranaires par la cristallographie aux rayons X et la modélisation qui font progresser notre compréhension des aspects fondamentaux et pratiques de fonctionnement des protéines membranaires.

Résumé / Abstract : Every living cell on Earth is surrounded by a lipid membrane. Proteins residing in the membrane perform a variety of functions crucial for the cell's survival. Among them are active and passive transport in and out of the cell, signaling and reaction catalysis.One of the largest membrane protein families are microbial rhodopsins, which utilize light energy for their function. Members of this family count among them light-driven proton, cation and anion pumps, light-gated ion channels and photoreceptors. While the basic aspects of their functioning have been known for some time, there is a plenty of unanswered questions. In this dissertation, several structures of microbial rhodopsins (among them the first proteorhodopsin structure and the first light-driven sodium pump structure) are presented and analyzed. The structures open the way for understanding the similarities and differences between the various microbial rhodopsins and for exploiting this understanding to create better microbial rhodopsin-based instruments for biological applications, for example, in the field of optogenetics.While the first part of this work deals with the novel structures of microbial rhodopsins, the second part presents the simulation approach for understanding the sensory rhodopsin-based signaling in phototaxis. The HAMP domains of the sensory rhodopsin transducer protein are studied by means of molecular dynamics, and it is demonstrated that the simulations may be used for building and validating the atomic structures of signaling domains, as well as for understanding the signaling-associated conformational changes, initiated by light-driven sensory rhodopsin transformations.The third and the last part describes the work on the Archaeoglobus fulgidus IPCT-DIPPS proteins, an enzyme catalyzing two consecutive steps of di-inositol-phosphate biosynthesis. The determined structure may serve as a model for understanding the catalytic mechanism of CDP-alcohol transferases, a large family of proteins counting thousands of members, among which are five human proteins that catalyze the major steps of lipid biosynthesis. The structure was also used to predict the binding sites of the ligands at the enzyme active site and to propose the mechanism of catalytic action.To sum up, this dissertation presents the structural studies of various membrane proteins by means of X-ray crystallography and modeling that advance our understanding of fundamental and practical aspects of membrane protein functioning.