Etude de l'initiation de la plasticité et de l'endommagement de polymères semi-cristallins par des méthodes d'évaluation non-destructives ultrasonores / Nicolas Casiez ; sous la direction de Olivier Lame

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Matériaux -- Détérioration

Ondes ultrasonores

Polymères

Classification Dewey : 620.118 072

Lame, Olivier (1975-.... ; auteur en mécanique) (Directeur de thèse / thesis advisor)

Institut national des sciences appliquées (Lyon ; 1957-....) (Organisme de soutenance / degree-grantor)

Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....) (Ecole doctorale associée à la thèse / doctoral school)

MATEIS - Matériaux : Ingénierie et Science - UMR 5510 (Rhône) (Laboratoire associé à la thèse / thesis associated laboratory)

Relation : Etude de l'initiation de la plasticité et de l'endommagement de polymères semi-cristallins par des méthodes d'évaluation non-destructives ultrasonores / Nicolas Casiez ; sous la direction de Olivier Lame / , 2015

Résumé / Abstract : Les polymères semi-cristallins sont des matériaux très répandus dans notre vie quotidienne et sont utilisés dans une large gamme d'applications, généralement sous des sollicitations viscoélastiques. Par conséquent, nombreux sont les travaux de recherche qui ont été menés ces dernières années afin d’étudier leurs propriétés élastiques et leurs micro-mécanismes de plasticité ou d'endommagement apparaissant en leur sein à l'échelle locale . Cependant, l'observation in situ de l'amorçage de ces mécanismes demeure problématique et requiert l’emploi d’équipements complexes. Dès lors, nous proposons d’utiliser des techniques d'analyse non destructives fondées sur la détection et la propagation d'ondes ultrasonores (US) afin d’obtenir de nouvelles informations sur l'initiation de la plasticité et de l'endommagement de polymères semi-cristallins. Plus précisément, nous avons utilisé les techniques de contrôle par ondes US et émission acoustique (EA) afin de caractériser la plasticité et l'endommagement de plusieurs PE , d’un PP et d’un PVDF lors d'essais de traction uniaxiale. La technique de contrôle US a permis de montrer que l'atténuation US de différents types d'ondes est élevée et augmente lorsque le taux de cristallinité du matériau diminue. Pour les ondes guidées, nous avons montré l'influence de la géométrie des éprouvettes ainsi que celle de la fréquence des ondes sur l'atténuation. Lors d’un essai de traction, une importante modification des paramètres US est observée lors du passage dans le domaine plastique, traduisant l'évolution de l'état de la microstructure, en particulier celui du réseau cristallin. La formation de micro-cavités a un impact significatif sur l'atténuation des ondes. L'effet de l'orientation des chaînes macromoléculaires a également été mis en évidence. L'activité acoustique des matériaux étudiés est faible mais il a été possible de vérifier que la majorité des signaux d'EA détectés proviennent bien des micro-mécanismes de plasticité et d'endommagement. L'effet de la vitesse de déformation est significatif et nous avons montré que la localisation de certains signaux est possible lorsque cette vitesse de déformation est élevée. L'activité acoustique présente trois phases au cours des essais de traction, ce qui nous a permis de proposer en conséquence un modèle de répartition des sources d'EA sur les éprouvettes. L'activité acoustique démarre toujours avant le seuil de plasticité montrant ainsi que des micro-mécanismes de plasticité et d'endommagement s'initient aux faibles déformations. La détection de signaux d'EA avant le seuil de plasticité dépend aussi du taux de cristallinité. Le nombre de signaux d'EA détectés ainsi que leur énergie augmentent avec le taux de cristallinité du matériau. Un critère de plasticité a donc été proposé.

Résumé / Abstract : Semi-crystalline polymers are widely used materials in our everyday life and in a large range of applications, generally under visco-elastic solicitations. Consequently, many of the recent years researches study their elastic properties and their plasticity or damage micro-mechanisms occurring at a local scale (nano and micrometer). However, in situ observations of the initiation of these mechanisms (e.g. shear crystallites, cavitation or martensitic transformation) remain problematic and require the use of complex devices. Therefore, we propose to use non-destructive evaluation techniques based on the detection and the propagation of ultrasonic (US) waves in order to obtain new information about the initiation of plastic deformation and damage of semi-crystalline polymers. More specifically, we have used US and acoustic emission (AE) techniques to characterize the plasticity and damage of several PE, a PP and a PVDF during tensile tests. The US monitoring technique showed that the US attenuation of several waves is high and increases when the degree of crystallinity of the material decreases. For guided waves, we showed the effect of the specimens’ geometry and the waves frequency on the US attenuation. A significant change of US parameters is observed at the elastic-plastic transition, reflecting changes in the microstructure’s state, in particular in the crystal network. The formation of micro-cavities has a significant impact on the attenuation. The effect of the orientation of macromolecular chains has also been highlighted. The acoustic activity of studied materials is weak but the majority of detected AE signals have been shown to actually originate from plasticity and damage micro-mechanisms. The effect of the strain rate is significant and we have shown that the localization of few signals is possible when the strain rate is high. The acoustic activity presents three phases during tensile tests, which allowed us to propose a model based on the distribution of AE sources on the specimens. The acoustic activity always starts before the yield point showing that plasticity and damage micro-mechanisms are initiated at small strains. The detection of AE signals before the yield point also depends on the crystallinity of the material. The number of AE signals and their energy increase with the degree of crystallinity. A plastic criterion has been proposed. The correlation between the acoustic signals and the different mechanisms is complex, however it seems that the cavitation, the breakage of crystalline lamellae and the martensitic transformation are responsible for the release of acoustic energy.