Star formation across cosmic time and its influence on galactic dynamics / Jonathan Freundlich ; sous la direction de Françoise Combes

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Formation stellaire

Matière interstellaire

Matière noire (astronomie)

Classification Dewey : 523.1

Combes, Françoise (1952-.... ; astrophysicienne) (Directeur de thèse / thesis advisor)

Université Pierre et Marie Curie (Paris ; 1971-2017) (Organisme de soutenance / degree-grantor)

École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Les observations montrent qu'il y a dix milliards d'années, les galaxies formaient bien plus d'étoiles qu'aujourd'hui. Comme les étoiles se forment à partir de gaz moléculaire froid, cela signifie que les galaxies disposaient alors d'importants réservoirs de gaz, et c'est ce qui est observé. Mais les processus de formation d'étoiles pourraient aussi avoir été plus efficaces : qu'en est-il ? Les étoiles se forment dans des nuages moléculaires géants liés par leur propre gravité, mais les toutes premières étapes de leur formation demeurent relativement mal connues. Les nuages moléculaires sont eux-mêmes fragmentés en différentes structures, et certains scénarios suggèrent que les filaments interstellaires qui y sont observés aient pu constituer la première étape de la formation des coeurs denses dans lesquels se forment les étoiles. En quelle mesure leur géométrie filamentaire affecte-t-elle les coeurs pré-stellaires ? Des phenomènes de rétroaction liés à l'évolution des étoiles, comme les vents stellaires et les explosions de supernovae, participent à la régulation de la formation d'étoiles et peuvent aussi perturber la distribution de matière noire supposée entourer les galaxies. Cette thèse aborde l'évolution des galaxies et la formation des étoiles suivant trois perspectives : (i) la caractérisation des processus de formation d'étoiles à des échelles sous-galactiques au moment de leur pic de formation ; (ii) la formation des coeurs pré-stellaires dans les structures filamentaires du milieu interstellaire ; et (iii) les effets rétroactifs de la formation et de l'évolution des étoiles sur la distribution de matière noire des galaxies.

Résumé / Abstract : Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.