Optimisation et contrôle de la transition dynamique de percolation au sein de matériaux nonostructurés : expérience et modélisation / Mathieu Badard ; sous la direction de Lionel Flandin

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Matériaux hybrides

Nanotubes

Diméticone

Permittivité

Classification Dewey : 620

Flandin, Lionel (19..-.... ; auteur en génie des matériaux) (Directeur de thèse / thesis advisor)

Nogueira, Ricardo (Président du jury de soutenance / praeses)

Université de Grenoble (2009-2014) (Organisme de soutenance / degree-grantor)

École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire d'électrochimie et de physicochimie des matériaux et des interfaces (Grenoble ; 1995-....) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : L'émergence des nanotubes de carbone a ouvert de nouveaux champs d'application dans le domaine des matériaux polymères. L'ajout de ces charges carbonées au sein de polymères permet la mise en œuvre de composites aux propriétés électriques optimisées. La conductivité de ces matériaux dépend en grande partie de l'organisation des charges dans la matrice, notamment de la présence de réseaux percolants. L'objectif du présent travail de thèse est de comprendre les mécanismes de structuration des nanotubes de carbone au sein de différents milieux. L'architecture de ces réseaux de charges a principalement été révélée par le biais de mesures électriques et diélectriques. L'originalité de nos travaux réside dans l'utilisation de matrices liquides, notamment des huiles de silicone, afin de s'affranchir des contraintes présentes dans les plastiques d'une part, et de simplifier les processus de mise en œuvre d'autre part. Le manuscrit de thèse est articulé autour de six chapitres. Une première partie bibliographique aborde les propriétés des nanotubes de carbone ainsi que les phénomènes que sont la percolation et la percolation dynamique. Le second chapitre, matériel & méthode, présente les matériaux employés ainsi que les différentes techniques de caractérisation utilisées au cours de la thèse. Le troisième chapitre de la thèse aborde, à travers des mesures de conductivité, la percolation dynamique des nanotubes de carbone sein d'huiles de silicone. Le chapitre 4 propose une modification la loi de puissance de Kirkpatrick, afin de décrire la conductivité en fonction du temps et du taux de charge. L'exposant critique de percolation, caractérisant la transition isolant conducteur, se révèle être un indicateur de l'état de dispersion des nanotubes à travers la matrice. Le chapitre 5 démontre la possibilité de contrôler l'organisation des charges par l'application d'un champ électrique. L'application d'un champ élevé permet une augmentation de plusieurs ordres de grandeur de la conductivité ainsi qu'une diminution des charges nécessaire à la formation d'un réseau percolant. Nous avons notamment déterminé des seuils de percolation de l'ordre de 0.005% massique en nanotube de carbone. Enfin, l'influence des propriétés intrinsèques de la matrice, telles la viscosité et la tension de surface, est étudié dans le chapitre 6. La dispersion des nanotubes de carbone s'avère être favorisée au sein de liquides ayant des tensions de surface proches de celle des tubes. Au contraire, une agrégation de charge est rapidement observée dans le cas ou la différence de tension de surface charge-matrice est importante. Nous avons également observé que la percolation des nanotubes est défavorisée au sein de milieux visqueux.

Résumé / Abstract : The rise of carbon nanotube has open possibility for composites polymers. Mixing this carbonaceous filler with polymer medias leads to an optimization of the electrical properties. Then, conductivity mainly depends of the filler architecture, especially the presence of percolating networks. The objective of this work is to understand the percolation mechanisms of the carbon nanotubes in different media. During this study, filler network has been revealed by the mean of electrical and dielectrical measurements. The originality of our work lies in the use of liquid matrices, such as silicone oils, in order to overcome the stresses in the plastic on the one hand, and to simplify the processing in other hand. This thesis is organized around six chapters. The first bibliographic part discusses the carbon nanotubes properties as well as percolation and dynamic percolation phenomena. The second chapter, matériel & méthode, presents the materials used and the different characterization techniques employed. The third chapter of the thesis talks about dynamic percolation of carbon nanotubes in silicone oil, probed by conductivity measurements. Chapter 4 provides a change of the power law Kirkpatrick to describe the conductivity as a function of time and filler content. The critical exponent of percolation is proving to be an indicator of the dispersion state of nanotubes throughout the matrix. In the Chapter 5, electric field is depicted as a tool to control the organization of fillers. The application of a high field increases the conductivity of several orders of magnitude and decreases the percolation threshold. Percolation thresholds close to 0.005 wt % have been determined. At last, the influence of the intrinsic properties of the matrix, such as viscosity and surface tension, is discussed in Chapter 6. Carbon nanotubes dispersion appears to be favored if the difference of surface tension between filler and liquid is low. In contrast, a filler aggregation is rapidly observed in the case where the difference in surface tension is important. We also observed that the percolation of the nanotubes is favored in viscous media.