Quantification des espèces radicalaires produites en présence de nanoparticules d'or soumises à un rayonnement ionisant / Manon Gilles ; sous la direction de Cécile Sicard-Roselli

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Nanoparticules d'or

Rayonnements ionisants

Radicaux libres (chimie)

Sicard-Roselli, Cécile (Directeur de thèse / thesis advisor)

Gervais, Benoit (Président du jury de soutenance / praeses)

Elleaume, Hélène (19..-.... ; auteure en biotechnologies) (Rapporteur de la thèse / thesis reporter)

Fromm, Michel (1962-....) (Rapporteur de la thèse / thesis reporter)

Méallet-Renault, Rachel (19..-....) (Membre du jury / opponent)

Mostafavi, Mehran (Membre du jury / opponent)

Université Paris-Sud (1970-2019) (Organisme de soutenance / degree-grantor)

Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015) (Ecole doctorale associée à la thèse / doctoral school)

Institut de chimie physique (Orsay, Essonne ; 2000-....) (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Afin d’améliorer les traitements par radiothérapie, des radiosensibilisateurs tels que les nanoparticules d’or (NPo) sont étudiés. Mais leur translation en clinique nécessite une bonne compréhension des phénomènes en jeu. Si l’effet radiosensibilisateur a bien été confirmé sur des cibles biologiques (ADN, cellules et in vivo) et si les radicaux hydroxyle ont souvent été proposés comme intermédiaires, aucune preuve claire n’a encore été apportée. Ce travail avait pour premier objectif d’élaborer un protocole de « référence » afin de quantifier les radicaux hydroxyle et les électrons produits par les NPo en interaction avec un rayonnement ionisant. Cette étude a mis en évidence des productions massives de ces deux espèces pour des NPo non-fonctionnalisées. De plus, l'étude de différents paramètres, tels que la quantité de dioxygène en solution ou le rayonnement incident, nous a conduits à proposer un nouveau mécanisme permettant de rendre compte de nos résultats. Néanmoins, l'application biologique des NPo ne peut être envisagée que si ces nano-objets sont fonctionnalisés afin de les rendre furtifs et de les adresser spécifiquement à la tumeur. Après synthèse et caractérisation poussée de différents types de NPo fonctionnalisées, nous avons comparé la production de radicaux hydroxyle avec la dégradation d’une cible biologique, l'ADN, et mis en évidence l'impact significatif de la fonctionnalisation sur l'effet radiosensibilisateur. Ainsi, cette étude apporte des informations essentielles en vue de l’optimisation de la conception des NPo les plus efficaces pour la radiosensibilisation, une première étape vers leur application radiothérapeutique.

Résumé / Abstract : To improve radiotherapy efficiency, radiosensitizers such as gold nanoparticles (GNP) are developed. But to translate them to clinics, a good knowledge of the processes at stage is needed. GNP radiosensitizing effect was well-confirmed on biological targets (DNA, cells and in vivo) and hydroxyl radicals are often proposed to be key intermediates, but no clear evidence has been given yet. In this work, we first developed a ‘reference’ protocol to quantify hydroxyl radicals and electrons produced by GNP in their interaction with ionizing radiation. These investigations reveal a massive production of both species for non-functionalized GNP. Moreover the study of various parameters such as the concentration of dissolved dioxygen or the energy of the incident radiation leads us to propose a new mechanism on the origin of the radiosensitizing effect. Nevertheless, biological applications of GNP can only be considered if the nano-objects are functionalized to make them furtive, address them or deliver medicines to the tumor. After synthesis and characterization of different functionalized GNP, we compared hydroxyl radicals production with the damages induced on DNA and highlighted a significant impact of functionalization on the radiosensitizing effect. Finally, this work gives valuable information for the design of the most efficient GNP for radiotherapy which is a first step towards their medical application.