Suivi par émission acoustique de la compaction de particules fragiles d' UO2 / Lise Hegron ; sous la direction de Nathalie Favretto-Cristini

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Milieux granulaires

Acoustique non linéaire

Combustibles nucléaires irradiés -- Traitement

Actinides -- Séparation

Favretto-Cristini, Nathalie (Directeur de thèse / thesis advisor)

Nicolas, Maxime (1971-....) (Président du jury de soutenance / praeses)

Rossignol, Fabrice (1969-....) (Rapporteur de la thèse / thesis reporter)

Tournat, Vincent (1976-....) (Rapporteur de la thèse / thesis reporter)

Reynaud, Pascal (1965-.... ; enseignant-chercheur en physique) (Membre du jury / opponent)

Radjaï, Farhang (19..-....) (Membre du jury / opponent)

Sornay, Philippe (Membre du jury / opponent)

Aix-Marseille Université (2012-....) (Organisme de soutenance / degree-grantor)

Ecole Doctorale Sciences pour l'Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Une option à l'étude pour le recyclage des actinides mineurs consiste à en incorporer environ 10% à une matrice d'UO2. La présence de pores ouverts interconnectés au sein de ce combustible devrait permettre d'évacuer l'hélium et les gaz de fission pour prévenir le gonflement de la pastille et in fine son interaction avec la gaine qui l'entoure. La mise en oeuvre des actinides mineurs oblige à travailler en cellule blindée, à minimiser leur rétention et à proscrire les ajouts de produits organiques. L'emploi de particules fragmentables de quelques centaines de micromètres paraît une solution intéressante pour contrôler la microstructure des comprimés crus et ainsi maîtriser la porosité ouverte après frittage. L'étude consiste à suivre par émission acoustique la compaction de particules fragiles d'UO2 et à relier leurs caractéristiques à la porosité ouverte obtenue après frittage des compacts. Le signal acquis lors d'essais de cisaillement sur des granulés individuels et sur des compacts montre que l'émission acoustique autorise la détection de la fragmentation et permet l'identification d'une forme d'onde caractéristique. Les influences de la contrainte de compaction, de la distribution granulométrique initiale et de la cohésion interne des granulés, sur la tenue mécanique des compacts et sur la microstructure des frittés, en particulier sur la porosité ouverte sont analysées. Moyennant quelques précautions, l'émission acoustique, par sa capacité à déterminer le domaine de fragmentation des granulés pendant la mise en forme, paraît une technique prometteuse pour suivre la compaction de particules fragiles en vue de la fabrication de combustibles à porosité maîtrisée.

Résumé / Abstract : One of the options considered for recycling minor actinides is to incorporate about 10% to UO2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it.Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering.The goal of this study is to monitor the compaction of brittle UO2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering.The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation.The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed.By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel.