Damage evaluation of civil engineering structures under extreme loadings / Bahar Ayhan Tezer ; sous la direction de Adnan Ibrahimbegovic et de Hasan Engin

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Endommagement, Mécanique de l' (milieux continus)

Éléments finis, Méthode des

Plasticité

Ibrahimbegovic, Adnan (1958-....) (Directeur de thèse / thesis advisor)

Engin, Hasan (Directeur de thèse / thesis advisor)

Brancherie, Delphine (19..-....) (Membre du jury / opponent)

École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....) (Organisme de soutenance / degree-grantor)

Istanbul teknik üniversitesi (Organisme de cotutelle / degree co-grantor)

École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne) (Ecole doctorale associée à la thèse / doctoral school)

Résumé / Abstract : Dans de nombreux domaines industriels et scientifiques, en particulier dans les domaines du génie civil et de génie mécanique, des matériaux à l’échelle de la microstructure, un très hétérogène par rapport à la nature du comportement mécanique. Cette fonctionnalité peut faire la prédiction du comportement de la structure soumise à différents types de chargement, nécessaires pour la conception durable, assez difficile. Le contrôle du comportement des ouvrages de génie civil est très complexe en raison de la diversité de la charge à laquelle ils sont soumis. La construction est maintenant réglementée partout dans le monde: les normes sont plus strictes et pris en compte, jusqu’à un état limite, en raison de différentes charges, par exemple des charges sévères tels que l’impact ou tremblement de terre. Modèles de comportement des matériaux et des structures doivent inclure l’élaboration de ces critères de conception et deviennent plus complexe. Ces modèles sont souvent basées sur des approches phénoménologiques, sont capables de reproduire la réponse du matériau au niveau ultime. Réponses de contrainte-déformation des matériaux sous sollicitations cycliques, dont de nombreuses recherches ont été exécutées dans les années précédentes afin de caractériser et le modèle, sont définies par différents types de propriétés de plasticité cycliques tels que l’écrouissageue, l’effet rochet et de de relaxation. En utilisant les modèles de comportement existants, ces réponses mentionnées peuvent être simulés d’une manière raisonnable. Cependant, il peut y avoir échec dans certains simulation des réponses structurelles et la déformation locale et globale. Insuffisance de ces études peut être résolu par le développement de solides modèles de comportement à l’aide d’expériences et de la connaissance des principes de fonctionnement des différents mécanismes de comportement inélastique ensemble. Dans ce travail, nous présentons un modèle phénoménologique constitutive qui est capable de coupler deux principaux mécanismes de comportement inélastique, plasticité et endommagement. Le modèle vise les applications de chargement cycliques. Ainsi, dans une partie de plasticité ou de dommages, les effets de durcissement isotropes et linéaires cinématiques à la fois sont pris en compte. Le principal avantage de ce modèle est l’utilisation de la plasticité indépendante contre les critères de l’endommagement pour décrire les mécanismes inélastiques. Un autre avantage concerne la mise en oeuvre numérique d’un tel modèle fourni en hybride-stress variationnel, obtenu avec une précision très améliorée et calcul efficace du stress et des variables internes dans chaque élément. Plusieurs exemples sont présentés afin de confirmer l’exactitude et l’efficacité de la formulation proposée en application à un chargement cyclique.

Résumé / Abstract : In many industrial and scientific domains, especially in civil engineering and mechanical engineering fields, materials that can be used on the microstructure scale, are highly heterogeneous by comparison to the nature of mechanical behavior. This feature can make the prediction of the behavior of the structure subjected to various loading types, necessary for sustainable design, difficult enough. The construction of civil engineering structures is regulated all over the world: the standards are more stringent and taken into account, up to a limit state, due to different loadings, for example severe loadings such as impact or earthquake. Behavior models of materials and structures must include the development of these design criteria and thereby become more complex, highly nonlinear. These models are often based on phenomenological approaches, are capable of reproducing the material response to the ultimate level. Stress-strain responses of materials under cyclic loading, for which many researches have been executed in the previous years in order to characterize and model, are defined by different kind of cyclic plasticity properties such as cyclic hardening, ratcheting and relaxation. By using the existing constitutive models, these mentioned responses can be simulated in a reasonable way. However, there may be failure in some simulation for the structural responses and local and global deformation. Inadequacy of these studies can be solved by developing strong constitutive models with the help of the experiments and the knowledge of the principles of working of different inelastic behavior mechanisms together. This dissertation develops a phenomenological constitutive model which is capable of coupling two basic inelastic behavior mechanisms, plasticity and damage by studying the cyclic inelastic features. In either plasticity or damage part, both isotropic and linear kinematic hardening effects are taken into account. The main advantage of the model is the use of independent plasticity versus damage criteria for describing the inelastic mechanisms. Another advantage concerns the numerical implementation of such model provided in hybrid-stress variational framework, resulting with much enhanced accuracy and efficient computation of stress and internal variables in each element. The model is assessed by simulating hysteresis loop shape, cyclic hardening, cyclic relaxation, and finally a series of ratcheting responses under uniaxial loading responses. Overall, this dissertation demonstrates a methodical and systematic development of a constitutive model for simulating a broad set of cycle responses. Several illustrative examples are presented in order to confirm the accuracy and efficiency of the proposed formulation in application to cyclic loading.