Spectroscopie électronique et effet zeeman dans le radical NiH / Cyril Richard ; sous la direction de Amanda Jane Ross et de Stephen H. Ashworth

Date :

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Spectroscopie électronique

Zeeman, Effet

Fluorescence

Spectres de fréquences

Champs magnétiques

Fourier, Spectroscopie par transformée de

Hydrures des métaux de transition

Astrophysique

Étoiles -- Spectres

Ross, Amanda Jane (1961-....) (Directeur de thèse / thesis advisor)

Ashworth, Stephen H. (19..-....) (Directeur de thèse / thesis advisor)

Broyer, Michel (19..-.... ; spécialiste en physique) (Président du jury de soutenance / praeses)

Pinchemel, Bernard (Rapporteur de la thèse / thesis reporter)

Tokaryk, Dennis (19..-....) (Rapporteur de la thèse / thesis reporter)

Rotger, Maud (physicienne) (Membre du jury / opponent)

Université Claude Bernard (Lyon ; 1971-....) (Organisme de soutenance / degree-grantor)

École doctorale de Physique et Astrophysique de Lyon (1991-....) (Ecole doctorale associée à la thèse / doctoral school)

Laboratoire de Spectrométrie Ionique et Moléculaire (Laboratoire associé à la thèse / thesis associated laboratory)

Résumé / Abstract : Cette thèse s'appuie sur la spectroscopie de NiH établie à la fin des années 1980 et au début des années 1990, principalement par le groupe du Pr. R. W. Field au MIT. Les mesures expérimentales ont amélioré de manière significative les travaux antérieurs, tant en spectroscopie en champ nul qu'en spectroscopie Zeeman. Le radical NiH est obtenu avec une source à décharge à température ambiante (310 K). Les radicaux formés dans la décharge sont excités par un laser continu à colorant et étudiés soit en spectroscopie d'excitation laser soit en fluorescence dispersée. Un circuit magnétique à aimants permanents (NdFeB) fournit un champ magnétique statique (0.4 – 0.9 T). En champ nul, les spectres de fluorescence par transformée de Fourier ont élargi les observations de l'état électronique fondamental jusqu'à 6000 cm-1, pour 58NiH et 60NiH. Les énergies sont modélisées avec un Hamiltonien effectif obtenu à partir du formalisme du modèle du 3d9 supermultiplet développé par le groupe de Field. Les mesures Zeeman se sont principalement concentrées sur l'étude des états Ω=3/2. Les facteurs de Landé effectifs ont été déterminés pour chaque niveau ro-vibrationnel pour les états de basse énergie et les états excités de 58NiH. L'inhabituelle dépendance en J des facteurs de Landé obtenus pour les états de basse énergie est expliquée par le modèle du supermultiplet, quantifiant alors l'ampleur des mélanges spin-orbite présents dans les états inférieurs. Les transitions étudiées ont un intérêt astrophysique depuis que plusieurs transitions d'hydrure métallique ont été observées dans les spectres d'étoiles froides et les taches solaires.

Résumé / Abstract : This thesis builds on the spectroscopy of NiH established in the late 1980s and early 1990s, principally by Pr. R. W. Field's group at MIT. Experimental measurements significantly extend earlier work, both in field-free and Zeeman spectroscopy. The NiH radical is obtained with a room-temperature metal-hydride discharge source (310 K). Radicals formed in the discharge are excited by a single-mode, continuous wave dye laser and can be conveniently studied either in laser excitation or in dispersed fluorescence. A magnetic circuit with permanent magnets (NdFeB) provides a static magnetic field (0.4 – 0.9 T). In the field-free regime, Fourier transform resolved fluorescence spectra have extended the range of observations up to 6000 cm-1 above v=0 of the electronic ground state, for 58NiH and 60NiH. Energies are modeled with an effective Hamiltonien matrix using the 3d9 supermultiplet formalism developed by Field's group. Zeeman measurements have focused mainly on the range of states studied by including transitions involving the Ω=3/2 excited states. Effective Landé factors have been determined for individual ro-vibrational levels of low-lying and excited states of 58NiH. The unusual J-dependence of the Landé factors obtained for low-lying states are explained by the 3d9 supermultiplet model, quantifying the extent of spin-orbit mixing present in the lower states. The transitions are of potential astrophysical interest since several transition metal hydrides have been observed in the spectra of cool stars and sunspots.