Respiratory motion compensation in emission tomography / par Mauricio Antonio Reyes Aguirre ; sous la direction de Grégoire Malandain

Date :

Editeur / Publisher : [S.l.] : [s.n.] , 2005

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : anglais / English

Tomographie

Poumon -- Cancer

Reconstruction d'image

Malandain, Grégoire (Directeur de thèse / thesis advisor)

École doctorale Sciences et technologies de l'information et de la communication (Sophia Antipolis, Alpes-Maritimes) (Ecole doctorale associée à la thèse / doctoral school)

Université de Nice (1965-2019) (Organisme de soutenance / degree-grantor)

Université de Nice-Sophia Antipolis. Faculté des sciences (Organisme de soutenance / degree-grantor)

Relation : Respiratory motion compensation in emission tomography / par Mauricio Antonio Reyes Aguirre / Villeurbanne : [CCSD] , 2008

Relation : Respiratory motion compensation in emission tomography / par Mauricio Antonio Reyes Aguirre ; sous la direction de Grégoire Malandain / Grenoble : Atelier national de reproduction des thèses , 2005

Résumé / Abstract : L'objectif de cette thèse sont les corrections liées aux problèmes des mouvements respiratoires en tomographie d'émission. Il a été prouve que les mouvements respiratoires produisent des images floues, ce qui affecte la détection des lésions, les diagnostics, les traitements, etc. La solution proposée a été conçue pour opérer sans aucun dispositif externe. Cette méthode présente un schéma de la correction du mouvement basée sur un modèle inclus dans la reconstruction d'image. Le modèle prend en compte les déplacements et déformations des éléments d'émissions (voxels), lequel permet de considérer les déformations non rigides produites dans le thorax pendant la respiration. De plus, le model de voxel choisit, permet une amélioration aux calculs par rapport aux méthodes classiques. Deux models d'estimation etaitent développes. Un premier model simplifie consiste a adapter un model de respiration connu sur l'anatomie du patient. Le model initial décrit a travers un champ de déplacement les déformations du poumon produit entre les états de respiration extreme. Ce champ de déplacement est ensuite adapte sur l'anatomie du patient. La deuxième méthode a été conçu pour prendre en compte le manque de robustesse provoque par l'utilisation d'un seul sujet quand on construit les champs de déplacement connus. Incorporation de la variation des sujets dans un model statistique de respiration a été développe. La méthodologie a été développe dans un cadre de reconstruction d'image 3D et a été teste avec des données simules et réels.

Résumé / Abstract : This thesis work deals with the problem of respiratory motion correction in emission tomography. It has been proven that respiratory motion renders blurred reconstructed images, affecting lesions detection, diagnosis, treatment, etc. The proposed approach was designed to work without any external tracking devices. It presents a retrospective scheme of motion correction based on a motion model plugged to the image reconstruction step. The model takes into account displacements and elastic deformations of emission elements (voxels), which allows to consider the non-rigid deformations produced in the thorax during respiration. Furthermore, the chosen voxel modeling improves computations, outperforming classical methods of voxel/detector-tube. Two estimation models were investigated and developed. A first simplified model consists on adapting a known respiratory motion model, obtained from a single subject, to the patient anatomy. The initial known model describes by means of a displacement vector field, the lungs deformations produced between extremal respiratory states. This displacement vector field is further adapted by means of an affine transformation to the patient's anatomy, yielding a displacement vector field that matches the thoracic cavity of the patient . The second method deals with the possible lack of robustness caused by the fact of using a single subject when constructing the known displacement vector field of the simplified method. Incorporation of subject variability into a statistical respiratory motion model was developed. The whole methodology was developed under a 3D framework and tested against simulated and real data.