Synthèse de nanoparticules magnétiques par décomposition de clusters bi-métalliques, en matrice se silice mésoporeuse / Fanny Tihay-Schweyer ; sous la dir. de Pierre Braunstein

Date :

Editeur / Publisher : [S.l.] : [s.n.] , 2002

Type : Livre / Book

Type : Thèse / Thesis

Langue / Language : français / French

Nanoparticules

Matériaux magnétiques

Clusters (chimie)

Matériaux poreux

Phosphine

Cobalt -- Alliages

Braunstein, Pierre (Directeur de thèse / thesis advisor)

Guille, Jean L. (Directeur de thèse / thesis advisor)

Université Louis Pasteur (Strasbourg) (1971-2008) (Organisme de soutenance / degree-grantor)

Relation : Synthèse de nanoparticules magnétiques par décomposition de clusters bi-métalliques, en matrice se silice mésoporeuse / Fanny Tihay-Schweyer ; sous la direction de Pierre Braunstein / Grenoble : Atelier national de reproduction des thèses , 2002

Résumé / Abstract : Le but de ce travail était la synthèse et l'étude de nanoparticules supportées par une matrice de silice mésoporeuse. Les précurseurs métalliques étaient des clusters comportant quatre atomes métalliques, du type [CoxRu(4-x)(CO)12]n-, où x = 4 à 1, et n = 0 ou 1. Deux matrices ont été employées : des xérogels, dont les pores sont désordonnés, et la MCM-41, dont les pores sont organisés de manière hexagonale. L'incorporation du cluster à la matrice a été réalisée par imprégnation et par greffage. Après traitement thermique, des nanoparticules apparaissent. Elles ont été caractérisées par microscopie électronique à transmission, diffraction des rayons X et électronique, et magnétisme. Dans tous les cas, les particules sont mieux réparties spatialement, et plus régulières en taille dans la matrice ordonnée que dans le xérogel. Lorsque le cluster est incorporé par imprégnation, deux populations de particules apparaissent : des petites, d'un diamètre équivalent à la taille des pores (2 nm), ne croissant pas avec la température de traitement, et des grosses, qui croissent sur les défauts de la matrice pour atteindre 50 nm. Nous avons montré qu'une ségrégation avait lieu, avec formation de particules de Co et de Ru pures en début de traitement, puis interdiffusion des métaux pour former les alliages correspondant à la stœchiométrie du cluster. Lorsque le cluster Co4(CO)10(æ-dppa) est greffé à la matrice par un alcoxyde modifié, contenant une fonction phosphine, des nanoparticules de 6 nm de Co2P sont formées après traitement thermique à 900 ʿC. Ce composé intermétallique est paramagnétique, mais nous avons pu l'obtenir à des températures beaucoup plus basses que par simple mélange des précurseurs.

Résumé / Abstract : We have synthesized and characterized silica supported nanoparticles. The metallic precursors were tetrahedral carbonyl clusters of the type [CoxRu(4-x)(CO)12]n-, where x = 4 to 1, et n = 0 or 1. Two matrices have been employed : xérogels, where the pores are disordered and MCM-41, where the pores are arranged in an hexagonal array. The incorporation of the cluster to the matrices have been done by impregnation and by grafting. After thermal treatments, nanoparticles appear. They have been characterized by transmission electronic microscopy, X-Ray and electron diffraction, and by their magnetic properties. In every cases, the spatial distribution, and the size distribution of the particles are better into the organized matrix than in the xérogel. When the cluster is incorporated by impregnation, two populations of particles are observed : small ones, with a diameter equivalent to the pores' (2 nm), that do not grow with increasing temperatures of treatment, and bigger ones ( up to 50 nm) that grow on the defects of the matrices. We have shown that a segregation appears. At the beginning of the thermal treatment, pure Co and Ru nanoparticles appear, then there is interdiffusion of the metals to form alloys with the same stoichiometry than the initial cluster. When the cluster Co4(CO)10(æ-dppa) is grafted to the matrices by a modified alcoxyde, containing a phosphine group, 6 nm Co2P nanoparticles are obtained after a thermal treatment at 900 ʿC under H2. This intermetallic compound is obtained at much lower temperature than if the precursors are simply mixed.